• Title/Summary/Keyword: Customer Searching Pattern

Search Result 7, Processing Time 0.022 seconds

The Effect of Deal-Proneness in the Searching Pattern on the Purchase Probability of Customer in Online Travel Services (소비자 키워드광고 탐색패턴에 나타난 촉진지향성이 온라인 여행상품 구매확률에 미치는 영향)

  • Kim, Hyun Gyo;Lee, Dong Il
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.39 no.1
    • /
    • pp.29-48
    • /
    • 2014
  • The recent keyword advertising does not reflect the individual customer searching pattern because it is focused on each keyword at the aggregate level. The purpose of this research is to observe processes of customer searching patterns. To be specific, individual deal-proneness is mainly concerned. This study incorporates location as a control variable. This paper examines the relationship between customers' searching patterns and probability of purchase. A customer searching session, which is the collection of sequence of keyword queries, is utilized as the unit of analysis. The degree of deal-proneness is measured using customer behavior which is revealed by customer searching keywords in the session. Deal-proneness measuring function calculates the discount of deal prone keyword leverage in accordance with customer searching order. Location searching specificity function is also calculated by the same logic. The analyzed data is narrowed down to the customer query session which has more than two keyword queries. The number of the data is 218,305 by session, which is derived from Internet advertising agency's (COMAS) advertisement managing data and the travel business advertisement revenue data from advertiser's. As a research result, there are three types of the deal-prone customer. At first, there is an unconditional active deal-proneness customer. It is the customer who has lower deal-proneness which means that he/she utilizes deal-prone keywords in the last phase. He/she starts searching a keyword like general ones and then finally purchased appropriate products by utilizing deal-prone keywords in the last time. Those two types of customers have the similar rates of purchase. However, the last type of the customer has middle deal-proneness; who utilizes deal-prone keywords in the middle of the process. This type of a customer closely gets into the information by employing deal-prone keywords but he/she could not find out appropriate alternative then would modify other keywords to look for other alternatives. That is the reason why the purchase probability in this case would be decreased Also, this research confirmed that there is a loyalty effect using location searching specificity. The customer who has higher trip loyalty for specificity location responds to selected promotion rather than general promotion. So, this customer has a lower probability to purchase.

Design and Implementation of Product Searching System on Internet using the Association Mining and Customer's Preference (연관 마이닝과 고객 선호도 기반의 인터넷 상품 검색 시스템 설계 및 구현)

  • Hwang, Hyun-Suk;Eh, Youn-Yang
    • Asia pacific journal of information systems
    • /
    • v.12 no.1
    • /
    • pp.1-16
    • /
    • 2002
  • Most of searching systems used by shopping-mall provide too much information for user requirements or fail to provide appropriate items reflecting customer's preference. This paper aims to design and implement the product searching systems based on customer preference which will enable efficient product selection in the internet shopping-mall. The proposed system consists of user/provider interface, searching and model agent, data management system, and model management system. Especially, we construct the searching pattern database to support fast search using association mining method. And this system includes the customer-oriented decision model which shows the highly preferred products. Input weight value per attribute and preference level should be needed to compute priority grade of preference.

An Optimal Pricing and Inventory control for a Commodity with Price and Sales-period Dependent Demand Pattern

  • Sung, Chang-Sup;Yang, Kyung-Mi;Park, Sun-Hoo
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.904-913
    • /
    • 2005
  • This paper deals with an integrated problem of inventory control and dynamic pricing strategies for a commodity with price and sales-period dependent demand pattern, where a seller and customers have complete information of each other. The problem consists of two parts; one is each buyer's benefit problem which makes the best decision on price and time for buyer to purchase items, and the other one is a seller's profit problem which decides an optimal sales strategy concerned with inventory control and discount schedule. The seller's profit function consists of sales revenue and inventory holding cost functions. The two parts are closely related into each other with some related variables, so that any existing general solution methods can not be applied. Therefore, a simplified model with single seller and two customers in considered first, where demand for multiple units is allowed to each customer within a time limit. Therewith, the model is generalized for a n-customer-classes problem. To solve the proposed n-customer-set problem, a dynamic programming algorithm is derived. In the proposed dynamic programming algorithm, an intermediate profit function is used, which is computed in case of a fixed initial inventory level and then adjusted in searching for an optimal inventory level. This leads to an optimal sales strategy for a seller, which can derive an optimal decision on both an initial inventory level and a discount schedule, in $O(n^2)$ time. This result can be used for some extended problems with a small customer set and a short selling period, including sales strategy for department stores, Dutch auction for items with heavy holding cost, open tender of materials, quantity-limited sales, and cooperative buying in the on/off markets.

  • PDF

Goods Recommendation Sysrem using a Customer’s Preference Features Information (고객의 선호 특성 정보를 이용한 상품 추천 시스템)

  • Sung, Kyung-Sang;Park, Yeon-Chool;Ahn, Jae-Myung;Oh, Hae-Seok
    • The KIPS Transactions:PartD
    • /
    • v.11D no.5
    • /
    • pp.1205-1212
    • /
    • 2004
  • As electronic commerce systems have been widely used, the necessity of adaptive e-commerce agent systems has been increased. These kinds of adaptive e-commerce agents can monitor customer's behaviors and cluster thou in similar categories, and include user's preference from each category. In order to implement our adaptive e-commerce agent system, in this paper, we propose an adaptive e-commerce agent systems consider customer's information of interest and goodwill ratio about preference goods. Proposed system build user's profile more accurately to get adaptability for user's behavior of buying and provide useful product information without inefficient searching based on such user's profile. The proposed system composed with three parts , Monitor Agent which grasps user's intension using monitoring, similarity reference Agent which refers to similar group of behavior pattern after teamed behavior pattern of user, Interest Analyzing Agent which personalized behavior DB as a change of user's behavior.

Dynamic Pricing for User Created Contents : Computer Modeling and Simulation (UCC의 동적 가격 결정 : 모델링과 시뮬레이션 이용)

  • Chung, Doo-Shik;Jo, Hyeon;Kim, Soung-Hie
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.6
    • /
    • pp.56-67
    • /
    • 2012
  • The User Created Contents (UCC) are traded actively on the on-line market. The current pricing policy on the UCC market is the fixed pricing, which is set by the seller once and price never changes again. However market demand and supply are changing hourly, so the studies about dynamic pricing to determine more properly have been carried out. This paper suggests dynamic pricing models for UCC by analyzing the customer's searching pattern. We propose 2 pricing models (trend change-based pricing model and relative pricing model), and experiment various status by controlling system and market variables. We demonstrated our model by computational modeling and simulation. The result of this research can be useful guidelines to increase the revenue and profit of the UCC Market.

Development of Music Recommendation System based on Customer Sentiment Analysis (소비자 감성 분석 기반의 음악 추천 알고리즘 개발)

  • Lee, Seung Jun;Seo, Bong-Goon;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.197-217
    • /
    • 2018
  • Music is one of the most creative act that can express human sentiment with sound. Also, since music invoke people's sentiment to get empathized with it easily, it can either encourage or discourage people's sentiment with music what they are listening. Thus, sentiment is the primary factor when it comes to searching or recommending music to people. Regard to the music recommendation system, there are still lack of recommendation systems that are based on customer sentiment. An algorithm's that were used in previous music recommendation systems are mostly user based, for example, user's play history and playlists etc. Based on play history or playlists between multiple users, distance between music were calculated refer to basic information such as genre, singer, beat etc. It can filter out similar music to the users as a recommendation system. However those methodology have limitations like filter bubble. For example, if user listen to rock music only, it would be hard to get hip-hop or R&B music which have similar sentiment as a recommendation. In this study, we have focused on sentiment of music itself, and finally developed methodology of defining new index for music recommendation system. Concretely, we are proposing "SWEMS" index and using this index, we also extracted "Sentiment Pattern" for each music which was used for this research. Using this "SWEMS" index and "Sentiment Pattern", we expect that it can be used for a variety of purposes not only the music recommendation system but also as an algorithm which used for buildup predicting model etc. In this study, we had to develop the music recommendation system based on emotional adjectives which people generally feel when they listening to music. For that reason, it was necessary to collect a large amount of emotional adjectives as we can. Emotional adjectives were collected via previous study which is related to them. Also more emotional adjectives has collected via social metrics and qualitative interview. Finally, we could collect 134 individual adjectives. Through several steps, the collected adjectives were selected as the final 60 adjectives. Based on the final adjectives, music survey has taken as each item to evaluated the sentiment of a song. Surveys were taken by expert panels who like to listen to music. During the survey, all survey questions were based on emotional adjectives, no other information were collected. The music which evaluated from the previous step is divided into popular and unpopular songs, and the most relevant variables were derived from the popularity of music. The derived variables were reclassified through factor analysis and assigned a weight to the adjectives which belongs to the factor. We define the extracted factors as "SWEMS" index, which describes sentiment score of music in numeric value. In this study, we attempted to apply Case Based Reasoning method to implement an algorithm. Compare to other methodology, we used Case Based Reasoning because it shows similar problem solving method as what human do. Using "SWEMS" index of each music, an algorithm will be implemented based on the Euclidean distance to recommend a song similar to the emotion value which given by the factor for each music. Also, using "SWEMS" index, we can also draw "Sentiment Pattern" for each song. In this study, we found that the song which gives a similar emotion shows similar "Sentiment Pattern" each other. Through "Sentiment Pattern", we could also suggest a new group of music, which is different from the previous format of genre. This research would help people to quantify qualitative data. Also the algorithms can be used to quantify the content itself, which would help users to search the similar content more quickly.

A Store Recommendation Procedure in Ubiquitous Market for User Privacy (U-마켓에서의 사용자 정보보호를 위한 매장 추천방법)

  • Kim, Jae-Kyeong;Chae, Kyung-Hee;Gu, Ja-Chul
    • Asia pacific journal of information systems
    • /
    • v.18 no.3
    • /
    • pp.123-145
    • /
    • 2008
  • Recently, as the information communication technology develops, the discussion regarding the ubiquitous environment is occurring in diverse perspectives. Ubiquitous environment is an environment that could transfer data through networks regardless of the physical space, virtual space, time or location. In order to realize the ubiquitous environment, the Pervasive Sensing technology that enables the recognition of users' data without the border between physical and virtual space is required. In addition, the latest and diversified technologies such as Context-Awareness technology are necessary to construct the context around the user by sharing the data accessed through the Pervasive Sensing technology and linkage technology that is to prevent information loss through the wired, wireless networking and database. Especially, Pervasive Sensing technology is taken as an essential technology that enables user oriented services by recognizing the needs of the users even before the users inquire. There are lots of characteristics of ubiquitous environment through the technologies mentioned above such as ubiquity, abundance of data, mutuality, high information density, individualization and customization. Among them, information density directs the accessible amount and quality of the information and it is stored in bulk with ensured quality through Pervasive Sensing technology. Using this, in the companies, the personalized contents(or information) providing became possible for a target customer. Most of all, there are an increasing number of researches with respect to recommender systems that provide what customers need even when the customers do not explicitly ask something for their needs. Recommender systems are well renowned for its affirmative effect that enlarges the selling opportunities and reduces the searching cost of customers since it finds and provides information according to the customers' traits and preference in advance, in a commerce environment. Recommender systems have proved its usability through several methodologies and experiments conducted upon many different fields from the mid-1990s. Most of the researches related with the recommender systems until now take the products or information of internet or mobile context as its object, but there is not enough research concerned with recommending adequate store to customers in a ubiquitous environment. It is possible to track customers' behaviors in a ubiquitous environment, the same way it is implemented in an online market space even when customers are purchasing in an offline marketplace. Unlike existing internet space, in ubiquitous environment, the interest toward the stores is increasing that provides information according to the traffic line of the customers. In other words, the same product can be purchased in several different stores and the preferred store can be different from the customers by personal preference such as traffic line between stores, location, atmosphere, quality, and price. Krulwich(1997) has developed Lifestyle Finder which recommends a product and a store by using the demographical information and purchasing information generated in the internet commerce. Also, Fano(1998) has created a Shopper's Eye which is an information proving system. The information regarding the closest store from the customers' present location is shown when the customer has sent a to-buy list, Sadeh(2003) developed MyCampus that recommends appropriate information and a store in accordance with the schedule saved in a customers' mobile. Moreover, Keegan and O'Hare(2004) came up with EasiShop that provides the suitable tore information including price, after service, and accessibility after analyzing the to-buy list and the current location of customers. However, Krulwich(1997) does not indicate the characteristics of physical space based on the online commerce context and Keegan and O'Hare(2004) only provides information about store related to a product, while Fano(1998) does not fully consider the relationship between the preference toward the stores and the store itself. The most recent research by Sedah(2003), experimented on campus by suggesting recommender systems that reflect situation and preference information besides the characteristics of the physical space. Yet, there is a potential problem since the researches are based on location and preference information of customers which is connected to the invasion of privacy. The primary beginning point of controversy is an invasion of privacy and individual information in a ubiquitous environment according to researches conducted by Al-Muhtadi(2002), Beresford and Stajano(2003), and Ren(2006). Additionally, individuals want to be left anonymous to protect their own personal information, mentioned in Srivastava(2000). Therefore, in this paper, we suggest a methodology to recommend stores in U-market on the basis of ubiquitous environment not using personal information in order to protect individual information and privacy. The main idea behind our suggested methodology is based on Feature Matrices model (FM model, Shahabi and Banaei-Kashani, 2003) that uses clusters of customers' similar transaction data, which is similar to the Collaborative Filtering. However unlike Collaborative Filtering, this methodology overcomes the problems of personal information and privacy since it is not aware of the customer, exactly who they are, The methodology is compared with single trait model(vector model) such as visitor logs, while looking at the actual improvements of the recommendation when the context information is used. It is not easy to find real U-market data, so we experimented with factual data from a real department store with context information. The recommendation procedure of U-market proposed in this paper is divided into four major phases. First phase is collecting and preprocessing data for analysis of shopping patterns of customers. The traits of shopping patterns are expressed as feature matrices of N dimension. On second phase, the similar shopping patterns are grouped into clusters and the representative pattern of each cluster is derived. The distance between shopping patterns is calculated by Projected Pure Euclidean Distance (Shahabi and Banaei-Kashani, 2003). Third phase finds a representative pattern that is similar to a target customer, and at the same time, the shopping information of the customer is traced and saved dynamically. Fourth, the next store is recommended based on the physical distance between stores of representative patterns and the present location of target customer. In this research, we have evaluated the accuracy of recommendation method based on a factual data derived from a department store. There are technological difficulties of tracking on a real-time basis so we extracted purchasing related information and we added on context information on each transaction. As a result, recommendation based on FM model that applies purchasing and context information is more stable and accurate compared to that of vector model. Additionally, we could find more precise recommendation result as more shopping information is accumulated. Realistically, because of the limitation of ubiquitous environment realization, we were not able to reflect on all different kinds of context but more explicit analysis is expected to be attainable in the future after practical system is embodied.