• Title/Summary/Keyword: Curved surface

Search Result 598, Processing Time 0.024 seconds

2D Flat Pattern Development Using Simplified 3D Torso Model (3D 동체 모형을 이용한 2D 전개 패턴 연구)

  • Kim, Myoung-Su;Hong, Kyung-Hi
    • Journal of the Ergonomics Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.85-91
    • /
    • 2005
  • To understand the basic relationship between 3D curved surface model and 2D pattern, simplified torso model was generated by commercial CAD program (IDEAS). 3D torso model was then divided into different blocks and unfolded into a flat pattern as in ordinary works of clothing item design. As results, 2D pattern development of different part of 3D torso model was attempted and analyzed mathematically. It was found that different height, radius and tangent slope of 3D blocks resulted in different 2D pattern. The relationships between the shape parameters of 3D torso blocks and those of 2D patterns were analyzed using regression equations. Direct way of drawing a 2D pattern of corresponding 3D torso block was also illustrated for the convenience of pattern making using conventional measurements of upper/ lower radii and height of 3D torso block.

A Study of Rivulet Flow on Inclined Surface (경사면에서의 리뷸릿 유동에 관한 연구)

  • Kim, Jin-Ho;Kim, Ho-Young;Lee, Jae-Heon
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.576-581
    • /
    • 2001
  • When a liquid is supplied through a nozzle onto a relatively nonwetting inclined solid surface, a narrow rivulet forms. This work provides novel physical insights into the following phenomena in the rivulet flow that have not been well understood to date. Firstly, the fundamental mechanism behind the transition of a linear rivulet to a droplet flow is investigated. The experiments show that the droplet flow emerges due to the necking of a liquid thread near the nozzle. Based on the observation, it is argued that when the retraction velocity of a liquid thread exceeds its axial velocity, the bifurcation of the liquid thread occurs, and this argument is experimentally verified. Secondly, a discussion on the curved motion of a meandering rivulet is given. This study proposes the contact angle hysteresis as a primary origin of the centripetal force that enables the rivulet's curved motion A simple scaling analysis based on this assumption predicts a radius of curvature which agrees with the experimental observation.

  • PDF

A Study on Curved Line Folding in Sheet Metal Working (박판금속성형에 있어서 곡선절곡에 관한 연구)

  • 양동열;이정우
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.7 no.3
    • /
    • pp.42-55
    • /
    • 1985
  • The study is concerned with the investigation of curved line folding of developable surface from flat sheets of metal. General geometric relations among folding line, folded surface, folded angle are derived. From the derived geometric relations, the required plastic work and punch force are derived for the first approximation. Five methods of forming are suggested and the experiment is carried out using two chosen methods for the prismatic developable surfaces of which cross-sections have 103.deg.arc, 180.deg.arc, sinusoidal shape. In the die design for the tolding of prismatic developable surfaces, a stack of sheets were used to form shapes of the dies by which acceptable folded surfaces were obtained. The computed plastic work and punch force turned out to be in reasonable agreement with the experimental result.

  • PDF

Study on Optimization for 2-D Curved Surface Forming by Multi-point Dieless Elasto-forming (다점 무금형 2차원 곡면성형 최적화 연구)

  • Kang D. H.;Park J. W.;Kim T. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.66-69
    • /
    • 2004
  • A new concept of multi-point dieless elasto-forming method has been developed to make various shape of curved surface without conventional dies. The developed dieless elasto-forming system consists of discrete punches controlled by servo motors and various kinds of elastomers(rubber and foam). To predict optimal position of punch elements, DTF(deformation transfer function) was introduced, and FEM analysis was carried out. The optimal arrangement of elastomer was selected considering characteristics of each elastomer, and a desired concave shape was formed. The experimental results were consistent with the numerical ones.

  • PDF

A Study on Machining of Uncut Volume at the Boundary Region of Curved Surfaces (곡면 경계부 미절삭 체적의 잔삭 가공에 관한 연구)

  • Maeng, Hee-Young;Yim, Choong-Hyuk
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.251-259
    • /
    • 2010
  • It is presented in this study a new efficient intelligent machining strategy, which can be used to remove the uncut volume at the boundary region of curved surfaces caused by cutter interference. The geometric form definitions and recognition of topological features of the surface triangulation mesh are used to generate cutter paths along successive and interconnected steepest pathways, that minimize the cusp height left after flat end milling. In order to machine the uncut volume gradually, the z-map cutter centers are adjusted to avoid cutter interference for the 6 kinds of avoidance types. And then, the generative subsequent paths are sequenced to determine the second step cutter paths for the next uncut volume. For the 2 kinds of test models with convex and concave surface region, the implemented software algorithm is evaluated by investigating the residual swelling of uncut volume for each machining step.

Multi-Point Sheet Forming Using Elastomer (탄소중합체를 이용한 다점 박판 성형)

  • 박종우
    • Transactions of Materials Processing
    • /
    • v.13 no.2
    • /
    • pp.129-136
    • /
    • 2004
  • Recently, instead of a matched die forming method requiring a high cost and long delivery term, a multi-point dieless forming method using a pair of matrix type punch array as flexible dies has been developed. Since the conventional multi-point dieless forming method has some disadvantages of difficulty in precise punch control and high-cost of equipment, a new concept of multi-point dieless forming method combined with an elasto-forming method has been suggested in this study. For optimal selection of elastomers, compression tests of rubbers, polyethylene and foams were carried out together with FEM analysis of the deformation behavior during sheet forming process using a rigid punch and elastomers. Compressive strain was concentrated on the upper central area of the elastomer under the punch, and the rubber exhibited higher concentration of the compressive strain than foams. Two-dimensional curved surface was formed successfully by the multi-point elasto-dieless forming method using an optimal combination of rubber and foam materials.

Multi-point sheet forming using elastomer (탄소중합체를 이용한 다점 박판 성형)

  • Park Jong-Woo
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.08a
    • /
    • pp.21-28
    • /
    • 2003
  • Recently, instead of a matched die forming method requiring a high cost and long deliverly ten a multi-point dieless forming method using a pair of matrix type punch array as flexible dies has been developed. As this multi-point dieless forming method has some disadvantage of difficulty in precise punch control and high-cost of equipment, a new concept of multi-point dieless forming method combined with elastomer forming was suggested in this study. For optimal selection of elastomers, compression tests of rubbers, polyethylene and foams were carried out together with FEM analysis of the deformation behavior during sheet forming process using a rigid punch and elastomers. Compressive strain was concentrated on the upper central area of the elastomer under the punch, and the rubber exhibited higher concentration of the compressive strain than foams. Two-dimensional curved surface was formed successfully by the multi-point elasto-dieless forming method using an optimal combination of a rubber and foam.

  • PDF

High-Frequency Analysis of Electromagnetic Backscattering from an Ellipsoid (타원체의 역방향 산란 해석)

  • Shim, Jae-Ruen
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.685-688
    • /
    • 2005
  • In this study, an efficient algorithm for the numerical search of the geodesic path of the creeping wave on a doubly curved surface is developed. The ellipsoid as a doubly curved surface is studied because of its three dimensional nature in that it can be used to simulate the body of an aircraft, or a missile body. Numerical result of the geodesic path on an ellipsoid is given.

  • PDF

Experimental Study of Three-Dimensional Turbulent Flow in a $90^{\circ}C$ Rectanglar Cross Sectional Strongly Curved Duct (직사각형 단면을 갖는 $90^{\circ}C$ 급곡관 내의 3차원 난류유동에 관한 실험적 연구)

  • 맹주성;류명석;양시영;장용준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.262-273
    • /
    • 1991
  • In the present study, the steady, incompressible, isothermal, developing flow in a 90.deg. rectangular cross sectional strongly curved duct with aspect ratio 1:1.5 and Reynolds number of 9.4*10$^{4}$ has been investigated. Measurements of components of mean velocities, pressures, and corresponding components of the Reynolds stress tensor are obtained with a hot-wire anemometer and pitot tube. In general, flow in a curved duct is characterized by the secondary vortices which are driven mainly by centrifugal force-radial pressure gradient imbalance, and the stress field stabilizing effects near the convex wall and destablizing effects close to the concave wall. It was found that the secondary mean velocities attain values up to 39% of the bulk velocity and are largely responsible for the convections of Reynolds stress in the cross stream plane. Therefor upstream of the bend the Reynolds stress are low. Corresponding to the small boundary layer thickness. At successive planes, large values of Reynolds stress were observed near the concave surface and the side wall.

Study on Thermal Analysis for Heating System of Mobile Smart Device Cover Glass Molding Machine (Mobile Smart Device Cover Glass 성형기기의 가열시스템 열해석에 관한 연구)

  • Shin, Hwan June;Lee, Jun Kyoung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.4
    • /
    • pp.50-55
    • /
    • 2014
  • Currently, flat cover glasses are widely applied to mobile devices. However, for a good design and for convenience of use, curved cover glasses are in demand. Thus, many companies are attempting to produce curved cover glasses using a shaving technique, but the production efficiency is very low. Therefore, a molding technique has been adopted to increase the efficiency of curved glass production systems. For a glass molding system, a uniform temperature distribution of the mold is crucial to produce high-quality curved cover glasses. Before setting the heating conditions of the molding system for a uniform temperature distribution by a thermal analysis, verification is required. Therefore, in this study, temperature measurements were conducted for a prototype molding system and the experimental results were compared with simulation computations. The temperatures of the heating block surface were in good agreement with the computational results for transient and steady conditions.