• Title/Summary/Keyword: Curved Pipe

Search Result 98, Processing Time 0.026 seconds

Fatigue Fracture Analysis of Curved Pipes Under Cyclic Loading (반복 하중에 의한 곡관의 피로 균열 해석)

  • Jang, Heung Woon;Jung, Jae-Wook;Hong, Jung-Wuk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.4
    • /
    • pp.363-368
    • /
    • 2016
  • In this study, we numerically analyze fatigue cracks of curved pipes under cyclic loadings. Numerical models of the curved pipes are developed. The models are verified with the experimental results in terms of fatigue lives and development process of the fatigue cracks. Erosion technique is applied to the solid elements in order to describe shapes of the fatigue cracks and estimate the fatigue lives. Also, development of the fatigue cracks is described by allocating sufficient number of solid elements in the radial direction. Fatigue lives and shapes of the crack resulting from numerical analyses show good agreement with those of the experiment considering ${\pm}100mm$ displacement. In addition, estimation of the fatigue life caused by displacement with different magnitude is conducted. We expect that the model can be applied to understand the relation between fatigue lives and characteristics of pipes or loadings.

Numerical Assessment of Tensile Strain Capacity for X80 Line Pipe Using GTN Model (GTN 모델을 이용한 X80 라인파이프의 인장 변형성능 해석)

  • Yoon, Young-Cheol;Kim, Ki-Seok;Lee, Jae Hyuk;Cho, Woo-Yeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.979-990
    • /
    • 2016
  • This study presents a nonlinear finite element procedure involving a phenomenological model to validate the tensile strain capacity of the X80 line pipe developed for the strain-based design purpose. The procedure is based on the Gurson-Tvergaard-Needleman (GTN) model, which models nucleation, growth and coalescence of void volume fraction occurred inside a metal. In this study, the user-defined material module (UMAT) is implemented in the commercial finite element platform ABAQUS and is applied to the nonlinear damage analysis of steel specimens. Material parameters for the nonlinear damage analysis of base and weld metals are calibrated from numerical simulations for the tensile tests of round bar and full thickness specimens. They are then employed in the numerical simulations for SENT (Single Edge Notch Tension) test and CWPT (Curved Wide Plate Test) and in the simulations, the tensile strain capacities are naturally evaluated. Comparison of the numerical results with the experimental results and the conventional empirical formulae shows that the proposed numerical procedure can fairly well predict the tensile strain capacity of X80 line pipe. So, it is readily expected to be effectively applied to the strain-based design procedure.

PIV Measurement of Pulsatile Flows in 3D Curved Tubes Using Refractive Index Matching Method (3차원 곡관에서의 굴절률 일치법을 이용한 맥동 유동의 PIV 측정)

  • Hong, Hyeon Ji;Ji, Ho Seong;Kim, Kyung Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.8
    • /
    • pp.511-517
    • /
    • 2016
  • Three-dimensional models of stenosis blood vessels were prepared using a 3D printer. The models included a straight pipe with axisymmetric stenosis and a pipe that was bent $10^{\circ}$ from the center of stenosis. A refractive index matching method was utilized to measure accurate velocity fields inside the 3D tubes. Three different pulsatile flows were generated and controlled by changing the rotational speed frequency of the peristaltic pump. Unsteady velocity fields were measured by a time-resolved particle image velocimetry method. Periodic shedding of vortices occurred and moves depended on the maximum velocity region. The sizes and the positions of the vortices and symmetry are influenced by mean Reynolds number and tube geometry. In the case of the bent pipe, a recirculation zone observed at the post-stenosis could explain the possibility of blood clot formation and blood clot adhesion in view of hemodynamics.

Performance Evaluation on the Pipelines for an Automated Vacuum Waste Collection System (생활폐기물 자동집하시설 이송관망 성능평가)

  • Jang, Choon-Man;Lee, Sang-Moon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.5
    • /
    • pp.26-32
    • /
    • 2015
  • This paper describes performance evaluation of design parameters, air velocity inside a pipeline and pressure along a pipeline, using experimental measurements in an automated vacuum waste collection system. Automatic robot having six cameras is introduced to analyze the internal pipeline conditions whether waste accumulates at the bottom of the pipeline or not. Throughout the experimental measurements of the pipeline having the various shapes, it is found that pressure and internal air velocity linearly increase along the pipeline from a waste inlet to a waste collection station while air density decreases due to the air compression effect with high pressure. Although air velocity inside the pipeline at a waste inlet keeps design velocity range between 20 m/s and 30 m/s, it is noted that air velocity near the waste collection station exceeds maximum design velocity of 30 m/s. Pressure increase per unit length is changed from 17.6 Pa/m to 18.9 Pa/m, which depends on the air velocity inside the pipeline. From the investigation inside the pipeline with CCTV loaded on an automated robot, waste accumulated at the bottom of the pipeline is mainly found at the downstream of a circular curved pipe, an inclined pipe and a bended pipe.

A Study on Numerical Analysis of Flow Uniformity According to Length and Degree Change of Mixed-Evaporator in 500 PS SCR Reactor (500 PS SCR 반응기 혼합증발관 길이와 각도 변화에 따른 유동균일도에 대한 수치해석적 연구)

  • Seong, Hongseok;Lee, Chungho;Suh, Jeongse
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.8
    • /
    • pp.337-342
    • /
    • 2016
  • A marine SCR System is emerging as an alternative to comply with NOx Tier III Emission standards, a restriction on greenhouse gas from vessels implemented by the International Maritime Organization. The system is greatly affected by the uniformity of the fluid flowing into the catalyst, so the performance of the catalyst of an SCR system needs to be guaranteed. This study conducted research on a mixed evaporator of an SCR system, which is one of the factors affecting the uniformity of the fluid. When the angle of the mixed evaporator is set to $90^{\circ}$, the fluid uniformity is at its highest at 83%, under the condition that the length of the mixed evaporator be 3.5 D. When the length was 3.5 D and less, the fluid uniformity had a tendency to improve relative to the case without a bent pipe. However, a longer mixed evaporator results in a more perfect liquidity development in the pipe with a liquidity distribution similar to the case where no curved pipe is formed in front of the catalyst. A lower angle for the mixed evaporator results in a lower flow uniformity, and a longer length of the mixed evaporator results in a lower difference in the flow uniformity caused by the angle. The flow uniformity can be improved by 6% with a mixed evaporator, which confirmed that all factors applied to an SCR system have a close relationship with the efficiency.

Design and Experimental Study on a Turbo Air Compressor for Fuel Cell Applications (연료전지용 터보 공기압축기의 설계 및 시험평가)

  • Choi, Jae-Ho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.1
    • /
    • pp.26-34
    • /
    • 2008
  • This study presents an aerodynamic design and an experimental performance test of a turbo air compressor consisted of mixed-flow impeller and curved diffuser for the PEM fuel cell vehicle application. Many studies compare the efficiency, cost or noise level of high-pressure and low-pressure operation of PEM fuel cell systems. Pressure ratio 2.2:1 is considered as design target The goal of compressor design is to enlarge the flow margin of compressor from surge to choke mass flow rate to cover the operational envelope of FCV. Large-scale rig test is performed to evaluate the compressor performance and to compare the effects of compressor exit pipe volume to stall or surge characteristics. The results show that the mixed-flow compressor designed has large flow margin, and the flow margin of compressor configuration with small exit volume is larger than that with large exit volume.

Experimental study of turbulent flow in a U-bend of circular cross-section (원형단면의 곡관에서의 난류유동 측정)

  • Lee, Geon-Hwi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.7
    • /
    • pp.956-965
    • /
    • 1998
  • Hot-wire measurement of the longitudinal and radial velocity components and Reynolds stresses are reported for developing turbulent flow in a strongly curved 180 deg. pipe and its tangents. Slanted wire is rotated to 6 directions and the voltage outputs of them are combined to obtain the mean velocities and Reynolds stresses. Significant double maxima in the longitudinal velocity component appear in the bend. V-profiles reveal the development of a strong secondary flow. This secondary flow is induced by the transverse pressure gradient set up between the outer(r$\sub$o/) and inner(r$\sub$i/) wall region of the bend. Another second cross-stream flow develops after .theta.=135 deg. and its direction is opposed to that of main second flow.

A Study on Friction Characteristics of Backfill Material for Heat Transport Pipeline (열 수송관로 되메움재의 마찰 특성에 관한 연구)

  • Kim, You-Seong;Park, Young-Jun;Cho, Dae-Seong;Bhang, In-Hwang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.1
    • /
    • pp.73-81
    • /
    • 2013
  • The objective of this paper is to minimize installation length of pipeline and to reduce burial depth for construction by increasing the friction coefficient caused by the interface between backfill material and pipeline. And then, the sufficient friction coefficient shortens the length of expansion joint pipe and gives the life extension of expansion joint absorber for efficient procedure regarding maintenance and administration of construction. The backfill material which is developed in this study has larger and smaller friction angle than that of conventional backfill material (river sand). The backfill material with tire powder provides low friction angle at curved section when pipe diameter increases in size (38% reduction at pipe diameter in 900 mm). When using backfill material with river sand and fly-ash, the mixture mixed with 1.5% fly-ash has 30% and that with 3% fly-ash has 50% reduction effect for minimum installation length of expansion joint pipe.

Inchworm-Like Robotic Colonoscope UsingLegs for Clamping (다리를 이용한 클램핑 방식의 자벌레 이동방식 대장내시경로봇)

  • Park, Hyun-Jun;Leem, Sang-Hyuck;Kim, Byung-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.6
    • /
    • pp.789-795
    • /
    • 2010
  • For the reliable clamping of a robotic colonoscope inside the colon, we propose a clamping module consisting of six legs at the front and a trigger at the rear. In addition, a pneumatic-line based locomotive mechanism, which was developed previously for in-pipe inspection, is adopted to reduce the friction force between the pneumatic lines and the locomotion environment. In order to evaluate locomotion performance, a robot with a diameter of 15 mm and a length of 110.250 mm is used. Based on control signal from LabVIEW, it is tested in acrylic pipe and pig's colon. The proposed robot is able to move in the curved path which has a radius of over 25 mm. The speed of the robot is 33 mm/s in a straight path and 12.1 mm/s on a vertical path. The proposed robot, which has one pneumatic line and two clamping modules, conclusively shows reliable locomotion performance under in vitro condition.

Validation Study on Processing Grip Part of Tensile Specimen Acquired from Corroded Pipeline (부식이 존재하는 기존 노후 관로에서 인장 시편 가공 시 그립 가공 타당성에 대한 연구)

  • Nam, Young Jun;Kim, Jeong Hyun;Bae, Cheol Ho;Lim, Yun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.2
    • /
    • pp.191-195
    • /
    • 2020
  • In this work, tensile tests, one of the most common test method to assess the condition of a corroded pipe, were conducted. According to ASTM E8 method, the use of flat or curved uni-axial tension test is allowed under the recommendation with the usage of grips corresponding to a curvature of the pipe. However, this method is not for corroded specimen. Furthermore, in the case of performing the multiple tensile tests with various curvatures, it is desirable not to produce zigs that fit each curvatures, if merely processing the specimen grip with curvature into the flat grip can show almost identical tensile behavior. Therefore, various tension simulations were conducted first to check if there exist any differences. Also, experiments on corroded tensile specimen were conducted and compared with the FEM simulation that reflects the actual geometry acquired from the 3D scanner.