• Title/Summary/Keyword: Curved Panel

Search Result 96, Processing Time 0.021 seconds

Application of machine learning and deep neural network for wave propagation in lung cancer cell

  • Xing, Lumin;Liu, Wenjian;Li, Xin;Wang, Han;Jiang, Zhiming;Wang, Lingling
    • Advances in nano research
    • /
    • v.13 no.3
    • /
    • pp.297-312
    • /
    • 2022
  • Coughing and breath shortness are common symptoms of nano (small) cell lung cancer. Smoking is main factor in causing such cancers. The cancer cells form on the soft tissues of lung. Deformation behavior and wave vibration of lung affected when cancer cells exist. Therefore, in the current work, phase velocity behavior of the small cell lung cancer as a main part of the body via an exact size-dependent theory is presented. Regarding this problem, displacement fields of small cell lung cancer are obtained using first-order shear deformation theory with five parameters. Besides, the size-dependent small cell lung cancer is modeled via nonlocal stress/strain gradient theory (NSGT). An analytical method is applied for solving the governing equations of the small cell lung cancer structure. The novelty of the current study is the consideration of the five-parameter of displacement for curved panel, and porosity as well as NSGT are employed and solved using the analytical method. For more verification, the outcomes of this reports are compared with the predictions of deep neural network (DNN) with adaptive optimization method. A thorough parametric investigation is conducted on the effect of NSGT parameters, porosity and geometry on the phase velocity behavior of the small cell lung cancer structure.

A Study on the functional pattern design for brassiere-focusing on large-breasted women- (기능성 브래지어 패턴디자인 연구 -돌출.하수 유방유형을 중심으로-)

  • Park, Eun-Mi;Im, Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.27 no.3_4
    • /
    • pp.407-417
    • /
    • 2003
  • The purpose of this study is to develop designs and patterns of a functional brassiere. For this purpose, women who have protruding and drooping breasts with 75B for their brassiere size were sampled. The fitting test for the fitness and function of test brassiere and control brassiere were carried out twice and compared the results from the both in terms of front, rear and side looks. The results of this study can be summarized as follows; 1. The results from measuring the level of sag and spread, and volume and protrusion of breasts shows that there are some distinctive differences in the measurements before and after wearing the test brassiere and the test brassiere is proved to be very effective in correcting breasts' shapes. 2. Front look: Since the two front cutting lines of the test brassiere served to have the curved main part pressing against the breasts, it could support breasts to more than satisfactory level. In addition, upperline panel and side panels of the test brassiere were found to have the upperline of the upper cup pressed against the breasts and at the same time it pressed and gathered the flab around upper part of the breasts and armpits that helped to rearrange the shape of the breasts. It is also proved that the two-pieced test brassier was found to be more functional in supporting the lower cup of the breasts. 3. Rear look: The test brassier was made up of two wide U-shaped wings with 2.5cm tape on its lower sides. Each wing has 4 lines and 3 hems (5.5cm). For this reason, the test brassiere was tighter and better fitted on its back. 4. Side look and entire look: The wings of the test brassiere might look wider than that of the control brassier which has conventional straight-shaped wings, but it was analyzed that the test brassiere held the upper and lower sides of the wings more effectively to be more pressed against the breast. Therefore, the test brassiere scored higher in terms of adjusting to body movements, while the control brassiere looked better in overall terms. 5. The functional brassier fur protruding and drooping breasts developed from the experiments of this study is a full side stretch brassiere which covers the entire breasts satisfactorily. The pattern drafting methods are suggested in to .

Mechanical Modeling of Rollable OLED Display Apparatus Considering Spring Component

  • Ma, Boo Soo;Jo, Woosung;Kim, Wansun;Kim, Taek-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.2
    • /
    • pp.19-26
    • /
    • 2020
  • Flexible displays have been evolved into curved, foldable, and rollable as the degree of bending increases. Due to the presence of brittle electrodes (e.g. indium-tin oxide (ITO)) that easily cracked and delaminated under severe bending deformation, lowering mechanical stress of the electrodes has been critical issue. Because of this, mechanical stress of brittle electrode in flexible displays has been analyzed mostly in terms of bending radius. On the other hand, in order to make rollable display, various mechanical components such as roller and spring are needed to roll-up or extend the screen for the rollable display apparatus. By these mechanical components, brittle electrode in the rollable display is subjected to the excessive tensile stress due to the retracting force as well as the bending stress by the roller. In this study, mechanical deformation of rollable OLED display was modeled considering boundary conditions of the apparatus. An analytical modeling based on the classical beam theory was introduced in order to investigate the mechanical behavior of the rollable display. In addition, finite element analysis (FEA) was used to analyze the effect of mechanical components in the apparatus on the brittle electrode. Furthermore, a strategy for improving the mechanical reliability of the rollable display was suggested through controlling the stiffness of adhesives in the display panel.

Study on mechanical behavioral characteristics of the curved FRP-concrete composite member for utilization as a tunnel lining structure (터널 라이닝 구조체로서 활용을 위한 곡면 FRP-콘크리트 복합부재의 역학적 거동특성 분석 연구)

  • Lee, Gyu-Phil;Shin, Hyu-Soung;Kim, Seung-Han
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.2
    • /
    • pp.149-158
    • /
    • 2011
  • Utilization of the fiber reinforced polymer (FRP) material has been increased as an alternative in a bid to supplement the problems with general construction materials such as long-term problems corrosion, etc. However, there are still many problems in using a linear-shaped FRP material for a tunnel lining structure which has arch-shape in general. In this study, the loading tests for the FRP-concrete composite member was carried out to evaluate their applicability as a tunnel reinforcement material, which are based on the results from preliminary numerical studies for identifying the behavioral characteristics of FRP-concrete composite member. Moreover, numerical analysis under the same condition as applied in the loading tests was again conducted for analysis of mechanical behavior of the composite member. As a result of the load test and numerical analysis, it appears that the FRP-concrete composite member is greatly subject to shear movement caused by bending tension acting on the interface between two constituent members.

A Numerical Simulation of Three- Dimensional Nonlinear Free surface Flows (3차원 비선형 자유표면 유동의 수치해석)

  • Chang-Gu Kang;In-Young Gong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.1
    • /
    • pp.38-52
    • /
    • 1991
  • In this paper, a semi-Lagrangian method is used to solve the nonlinear hydrodynamics of a three-dimensional body beneath the free surface in the time domain. The boundary value problem is solved by using the boundary integral method. The geometries of the body and the free surface are represented by the curved panels. The surfaces are discretized into the small surface elements using a bi-cubic B-spline algorithm. The boundary values of $\phi$ and $\frac{\partial{\phi}}{\partial{n}}$ are assumed to be bilinear on the subdivided surface. The singular part proportional to $\frac{1}{R}$ are subtracted off and are integrated analytically in the calculation of the induced potential by singularities. The far field flow away from the body is represented by a dipole at the origin of the coordinate system. The Runge-Kutta 4-th order algorithm is employed in the time stepping scheme. The three-dimensional form of the integral equation and the boundary conditions for the time derivative of the potential Is derived. By using these formulas, the free surface shape and the equations of motion are calculated simultaneously. The free surface shape and fille forces acting on a body oscillating sinusoidally with large amplitude are calculated and compared with published results. Nonlinear effects on a body near the free surface are investigated.

  • PDF

Conductive Yarn Stitch Circuit Design and Output Power Analysis for Power Transfer in Solar Wearable Energy Harvesting (태양광 웨어러블 에너지 하베스팅의 전력 전달을 위한 최적의 전도사 스티치 회로 설계 및 출력 전력 분석)

  • Jun-hyeok Jang;Ji-seon Kim;Jung-Eun Yim;Jin-Yeong Jang;Jooyong Kim
    • Science of Emotion and Sensibility
    • /
    • v.25 no.4
    • /
    • pp.119-128
    • /
    • 2022
  • This study analyzes the effects of the number of angles and bends on resistance in a conductor-embroidered stitch circuit for efficient power transfer through a conductor of wearable energy harvesting to study changes in power lost through connection with actual solar panels. In this study, the angle of the conductive stitch circuit was designed in units of 30˚, from 30˚ to 180˚, and the resistance was measured using an analog Discovery 2 device. The measured resistance value was analyzed, and in the section of the angle where the resistance value rapidly changes, it was measured again and analyzed in units of 5˚. Following this, from the results of the analysis, the angle at which the tension was applied to the stitch converges was analyzed, and the resistance was measured again by varying the number of bends of the stitch at the given angle. The resistance decreases as the angle of the stitch decreases and the number of bends increases, and the conductor embroidery stitch can reduce the loss of power by 1.61 times relative to general embroidery. These results suggest that the stitching of embroidery has a significant effect on the power transfer in the transmission through the conductors of wearable energy harvesting. These results indicate the need for a follow-up study to develop a conductor circuit design technology that compares and analyzes various types of stitches, such as curved stitches, and the number of conductors, so that wearable energy harvesting can be more efficiently produced and stored.