Acknowledgement
이 논문은 2022년도 정부(산업통상자원부)의 재원으로 한국산업기술진흥원의 지원을 받아 수행된 연구임(P0012770, 2022년 산업혁신인재성장지원사업).
References
- Amba Sankar, K., & Mohanta, K. (2018). Preparation of highly conductive yarns by an optimized impregnation process. Journal of Electronic Materials, 47(3), 1970-1978.
- Bahk, J.-H., Fang, H., Yazawa, K., & Shakouri, A. (2015). Flexible thermoelectric materials and device optimization for wearable energy harvesting. Journal of Materials Chemistry C, 3(40), 10362-10374. https://doi.org/10.1039/C5TC01644D
- Chai, Z., Zhang, N., Sun, P., Huang, Y., Zhao, C., Fan, H. J., Fan, X., & Mai, W. (2016). Tailorable and wearable textile devices for solar energy harvesting and simultaneous storage. ACS Nano, 10(10), 9201-9207. https://doi.org/10.1021/acsnano.6b05293
- Chatterjee, K., Tabor, J., & Ghosh, T. K. (2019). Electrically conductive coatings for fiber-based e-textiles. Fibers, 7(6), 51.
- Cho, H. S., Koo, H. R., Yang J. H., Lee, K. H., Kim, S. M., Lee, J. H., Kwak, H. K., Ko, Y. S., Oh, Y. J., Park, S. Y., Kim, S. H. & Lee, J. H. (2021). Effect of the configuration of contact type textile electrode on the performance of heart activity signal acquisition for smart healthcare. Science of Emotion & Sensibility, 21(4), 63-76.
- Choi, Y.-M., Lee, M. G., & Jeon, Y. (2017). Wearable biomechanical energy harvesting technologies. Energies, 10(10), 1483.
- Dincer, I. (2000). Renewable energy and sustainable development: A crucial review. Renewable and Sustainable Energy Reviews, 4(2), 157-175. https://doi.org/10.1016/S1364-0321(99)00011-8
- Jokic, P., & Magno, M. (2017). Powering smart wearable systems with flexible solar energy harvesting. 2017 IEEE International Symposium on Circuits and Systems (ISCAS).
- Kim, B., Koncar, V., Devaux, E., Dufour, C., & Viallier, P. (2004). Electrical and morphological properties of PP and PET conductive polymer fibers. Synthetic Metals, 146(2), 167-174.
- Kim, K.-T., Manoharan, M. S., Abdelkader, M. A. T., Lee, C.-G., Park, J.-H., Ahmed, A., Min, S.-G., & Park, J.-H. (2021). Skin effect-related AC resistance study in macroscopic scale carbon nanotube yarn applicable to high-power converter. IEEE Transactions on Nanotechnology, 20, 417-424. https://doi.org/10.1109/TNANO.2021.3076472
- Komolafe, A., Zaghari, B., Torah, R., Weddell, A., Khanbareh, H., Tsikriteas, Z. M., Vousden, M., Wagih, M., Jurado, U. T., & Shi, J. (2021). E-textile technology review-from materials to application. IEEE Access.
- Lee, Y.-H., Kim, J.-S., Noh, J., Lee, I., Kim, H. J., Choi, S., Seo, J., Jeon, S., Kim, T.-S., & Lee, J.-Y. (2013). Wearable textile battery rechargeable by solar energy. Nano Letters, 13(11), 5753-5761. https://doi.org/10.1021/nl403860k
- Liu, S., Yang, C., Zhao, Y., Tao, X. M., Tong, J., & Li, L. (2016). The impact of float stitches on the resistance of conductive knitted structures. Textile Research Journal, 86(14), 1455-1473.
- Lund, H. (2007). Renewable energy strategies for sustainable development. Energy, 32(6), 912-919. https://doi.org/10.1016/j.energy.2006.10.017
- Lv, J., Jeerapan, I., Tehrani, F., Yin, L., Silva-Lopez, C. A., Jang, J.-H., Joshuia, D., Shah, R., Liang, Y., & Xie, L. (2018). Sweat-based wearable energy harvesting-storage hybrid textile devices. Energy & Environmental Science, 11(12), 3431-3442. https://doi.org/10.1039/C8EE02792G
- Magno, M., & Boyle, D. (2017). Wearable energy harvesting: From body to battery. 2017 12th International Conference on Design & Technology of Integrated Systems In Nanoscale Era (DTIS).
- Moriarty, P., & Honnery, D. (2012). What is the global potential for renewable energy?. Renewable and Sustainable Energy Reviews, 16(1), 244-252. https://doi.org/10.1016/j.rser.2011.07.151
- Stoppa, M., & Chiolerio, A. (2014). Wearable electronics and smart textiles: A critical review. Sensors, 14(7), 11957-11992. https://doi.org/10.3390/s140711957
- Xue, P., Park, K., Tao, X., Chen, W., & Cheng, X. (2007). Electrically conductive yarns based on PVA/carbon nanotubes. Composite Structures, 78(2), 271-277. https://doi.org/10.1016/j.compstruct.2005.10.016
- Zhang, H., Wu, W., Ma, H., & Cao, J. (2021). Hollow graphene fibres of highly ordered structure via coaxial wet spinning with application to multi-functional flexible wearables. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 615, 126193.