• Title/Summary/Keyword: Curve number

Search Result 1,427, Processing Time 0.039 seconds

Multiscale Simulation for Adsorption Process Development: A Case Study of n-Hexane Adsorption on Activated Carbon (흡착공정 개발을 위한 다중규모 모사: 활성탄에서의 n-Hexane 흡착에 관한 사례연구)

  • Son, Hae-Jeong;Lim, Young-Il;Yoo, Kyoung-Seun
    • Korean Chemical Engineering Research
    • /
    • v.46 no.6
    • /
    • pp.1087-1094
    • /
    • 2008
  • This article presents a multi-scale simulation approach starting from the molecular level for the adsorption process development, specifically, in n-hexane adsorption on activated carbon. A grand canonical Monte-Carlo(GCMC) method is used for the prediction of adsorption isotherms of n-hexane on activated carbon at the molecular level. Geometric effects and hydrodynamic properties of the adsorption column are examined by means of the two dimensional CFD(computational fluid dynamics) simulation. The adsorption isotherms from the molecular simulation and the axial diffusivity from the CFD simulation are exploited for the process simulation where the elution curve of n-hexane is obtained. For the first moment(mean residence time) of the pulse-response with respect to temperature and flowrate, the process simulation results obtained from this three-steps multiscale simulation approach show a good agreement with experimental data within 20% of maximum difference. The multi-scale simulation approach addressed in this study will be useful to accelerate the adsorption process development, while reducing the number of experiments required.

Inverse model for pullout determination of steel fibers

  • Kozar, Ivica;Malic, Neira Toric;Rukavina, Tea
    • Coupled systems mechanics
    • /
    • v.7 no.2
    • /
    • pp.197-209
    • /
    • 2018
  • Fiber-reinforced concrete (FRC) is a material with increasing application in civil engineering. Here it is assumed that the material consists of a great number of rather small fibers embedded into the concrete matrix. It would be advantageous to predict the mechanical properties of FRC using nondestructive testing; unfortunately, many testing methods for concrete are not applicable to FRC. In addition, design methods for FRC are either inaccurate or complicated. In three-point bending tests of FRC prisms, it has been observed that fiber reinforcement does not break but simply pulls out during specimen failure. Following that observation, this work is based on an assumption that the main components of a simple and rather accurate FRC model are mechanical properties of the concrete matrix and fiber pullout force. Properties of the concrete matrix could be determined from measurements on samples taken during concrete production, and fiber pullout force could be measured on samples with individual fibers embedded into concrete. However, there is no clear relationship between measurements on individual samples of concrete matrix with a single fiber and properties of the produced FRC. This work presents an inverse model for FRC that establishes a relation between parameters measured on individual material samples and properties of a structure made of the composite material. However, a deterministic relationship is clearly not possible since only a single beam specimen of 60 cm could easily contain over 100000 fibers. Our inverse model assumes that the probability density function of individual fiber properties is known, and that the global sample load-displacement curve is obtained from the experiment. Thus, each fiber is stochastically characterized and accordingly parameterized. A relationship between fiber parameters and global load-displacement response, the so-called forward model, is established. From the forward model, based on Levenberg-Marquardt procedure, the inverse model is formulated and successfully applied.

Physicochemical Properties of Phosphatidylcholine (PC) Monolayers with Different Alkyl Chains, at the Air/Water Interface

  • Yun, Hee-Jung;Choi, Young-Wook;Kim, Nam-Jeong;Sohn, Dae-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.377-383
    • /
    • 2003
  • Physicochemical properties of a series of PC monolayers with different alkyl chains (C24, C20, C16, and C8), at the air/water interface were investigated. The surface pressure is influenced mainly by the hydrophobicity of the PCs, which is confirmed by the curve shape and the on-set value of π-A isotherms at the air/water interface by increasing the number of alkyl chain. The on-set values of surface pressure were 125 Ų/molecule for DOPC(C8), 87 Ų/molecule for DPPC(C16), 75 Ų/molecule for DAPC(C20), and 55 Ų/molecule for DLPC(C24), respectively. The orientations of alkyl chains at the air/water interface are closely connected with the rigidity of the monolayers, and it was confirmed by the tendency of monolayer thickness in ellipsometry data. The temperature dependence of a series of PCs shows that the surface pressure decreases by increasing temperature, because the longer the alkyl chain length, the larger the hydrophobic interaction in surface pressure. The temperature effects and the conformational changes of unsaturated and saturated PCs were confirmed by the computer simulation study of the cis-trans transition with POPC and DPPC(C16). The cistrans conformational energy difference of POPC is 62.06 kcal/mol and that of DPPC(C16) is 6.75 kcal/mol. Due to the high conformational energy barrier of POPC, phase transition of POPC is limited in comparison with DPPC(C16).

Modulation Transfer Function System for a Mid-infrared Lens by Knife-edge Scanning Technique (칼날 주사방식을 이용한 중적외선 렌즈의 변조전달함수 측정 장치)

  • Song, Se-Yong;Jo, Jae-Heung;Hong, Sung-Mok;Lee, Hoi-Youn;Lee, Yun-Woo
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.1
    • /
    • pp.16-22
    • /
    • 2011
  • We fabricate a measuring system to measure the modulation transfer function (MTF) of a mid-infrared imaging silicon lens by using the knife-edge scanning technique. In particular, we measure on-axial tangential MTF of the silicon lens with the focal length of 50 mm and F-number F/4 in the wavelength band of mid-infrared between $3\;{\mu}m$ and $5\;{\mu}m$. In order to obtain the infinite object, the off-axial parabolic reflector with the focal length of 2.545 m is utilized. In the comparison with measured MTF data and designed MTF values curve, we find that the tolerance of measured MTF data below the spatial frequency of 7 lp/mm is within 2%.

Simulation of the Debris Flow Using FLO-2D According to Curve-shape Changes in Bed Slopes (FLO-2D를 활용한 경사지 형상에 따른 토석류 흐름양상에 대한 수치모의)

  • Jung, Hyo Jun;Yoo, Hyung Ju;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.13 no.3
    • /
    • pp.45-58
    • /
    • 2020
  • Due to a high portion of mountainous terrains in Korea, debris flow and its disasters have been increased. In addition, recently localized flash-floods caused by climate change should add frequencies and potential risks. Grasping and understanding the behaviors of debris flow would allow us to prevent the consequent disasters caused by its occurrence. In this study, we developed a number of cases by changing the bottom slopes and their curvatures and investigated their effects on potential damage caused by the debris flow using FLO-2D. As simulating each bed slopes we analyzed for velocity, depth, impact, reach distance, and reach shape. As a result the lower the average slope, the greater the influence of its curvature and the numerical results were analyzed with showed a well-marked difference in impact stress and flow velocity. The result from this study could be referred for protecting from the debris flows when design countermeasure structures in mountainous regions.

Inhibition of Klebsiella pneumoniae ATCC 13883 Cells by Hexane Extract of Halimeda discoidea (Decaisne) and the Identification of Its Potential Bioactive Compounds

  • Supardy, Nor Afifah;Ibrahim, Darah;Sulaiman, Shaida Fariza;Zakaria, Nurul Aili
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.6
    • /
    • pp.872-881
    • /
    • 2012
  • The inhibitory effect of the Klebsiella pneumoniae ATCC 13883 strain caused by the hexane extract of Halimeda discoidea (Nor Afifah et al., 2010) was further evaluated by means of the microscopy view and its growth curves. The morphological changes of the K. pneumoniae ATCC 13883 cells were observed under the scanning electron microscope (SEM) and transmission electron microscope (TEM) after they were treated at minimum inhibitory concentration (MIC; 0.50 mg/ml) (Nor Afifah et al., 2010) for 12, 24, and 36 h. The results showed the severity of the morphological deteriorations experienced by the treated cells. The killing curve assay was performed for 48 h at three different extract concentrations (1/2 MIC, MIC, and 2 MIC). An increase in the extract concentration of up to 2 MIC value did significantly reduce the number of cells by approximately 1.9 $log_{10}$, as compared with the control. Identification of the potential compounds of the extract responsible for the antibacterial activity was carried out through the gas chromatography-mass spectrum (GC-MS) analysis of the active subfraction, and the compound E-15-heptadecenal was identified and suggested as the most potential antibacterial compound of this extract. The subsequent cellular degenerations showed by the data might well explain the inhibitory mechanisms of the suggested antibacterial compound. All of these inhibitory effects have further proven the presence of an antibacterial compound within H. discoidea that can inhibit the growth of K. pneumoniae ATCC 13883.

Behaviour of Lightweight Concrete Slab Reinforced with GFRP Bars under Concentrated Load (집중하중을 받는 GFRP 보강근 경량콘크리트 슬래브의 거동)

  • Son, Byung-Lak;Kim, Chung-Ho;Jang, Heui-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.57-66
    • /
    • 2015
  • This paper is a preliminary study to apply the lightweight concrete slabs reinforced with GFRP (glass fiber reinforced polymer) bars to the bridge deck slabs or some other concrete structures. So, some different behaviors between the conventional steel reinforced concrete slab and the lightweight concrete slab reinforced with GFRP bars were investigated. For this purpose, a number of slabs were constructed and then the three point bending test and numerical analysis for these slabs were performed. The flexural test results showed that the lightweight concrete slabs reinforced with GFRP bars were failed by the shear failure due to the over-reinforced design. The weight and failure load of the GFRP bar reinforced lightweight concrete slabs were 72% and 58% of the steel reinforced concrete slab with the same dimensions, respectively. Results of the numerical analysis for these slabs using a commercial program, midas FEA, showed that the load-deflection curve could be simulated well until the shear failure of the slabs, but the applied loads and the deflections continuously increased even beyond the shear failure loads.

Theoretical Calculation of Activity Coefficients of Liquid Mixtures (액체혼합물의 활동도계수의 이론적 계산)

  • Moon Dae-Won;Jhon Mu Shik;Lee Taikyue
    • Journal of the Korean Chemical Society
    • /
    • v.21 no.6
    • /
    • pp.395-403
    • /
    • 1977
  • Significant structure theory was applied to some liquid mixture systems ranging from simple monatomic molecule systems to polyatomic molecule systems, and the activity coefficients ${\gamma}$ of the liquid mixture systems were calculated over whole mole fractions using the following thermodynamic relation $RTln_{{\gamma}i} = (\frac{{\partial A}^E}{{\partial N}_i})_{T,V,N_i} $ where $A^E$ represents the excess Helmholtz free energy, and $N_i$ is the number of molecules of component i. The activity coefficients of the solutions such as monatomic molecule systems (Ar-Kr, Kr-Xe) and diatomic molecule systems $(Ar-O_2,\;N_2-CO)$ and $CH_4-Kr$ systems whose components have similar shapes for intermolecular potential curves were calculated successfully only with the ${\delta}E_s$, correction parameter for energy $E_s$, for mixture systems. For other systems such as $Ar-N_2,\;O_2-N_2\;and\;CH_4-C_3H_8$ whose components have dissimilar intermolecular potential curve shapes an additional correction parameters ${\delta}$V and even one more parameter ${\delta}$n were necessary [see Eqs.(10)∼(12)].

  • PDF

Studies on utilizing Volume (입목(立木)의 이용재적(利用材積)에 대(對)하여)

  • Kim, Kap Duk
    • Journal of Korean Society of Forest Science
    • /
    • v.3 no.1
    • /
    • pp.10-14
    • /
    • 1963
  • 1. This is a study on the utilization volume of the 94 native Korean red pines in Kwangyan Forests. 2. The formulas which derived by the above investigation are follows. a. Hight growth curve ; $H=4.76+0.125D+0.0026D^2$ b. Cubic volume formula; $V=0.0000839D^{2.3}\;H^{0.2}$ c. The relation between utilization volume and log length ; Vu=0.1708-0.0230L d. The percentage of utilization, when length was 2 meters; $P=27.37\;D^{0.3648}$ e. The number of 2 meter long timbers; $N=0.0863D^{1.16}$ f. The equation of the utilization timber volume when log length was 2 meters; $Vu=0.0000159D^2\;H^{1.3}$ 3. As a conclusion, it was found that the utilization volume in the case of 2 meter log, was most greater than the others.

  • PDF

A New Scalar Recoding Method against Side Channel Attacks (부채널 공격에 대응하는 새로운 스칼라 레코딩 방법)

  • Ryu, Hyo Myoung;Cho, Sung Min;Kim, TaeWon;Kim, Chang han;Hong, Seokhie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.3
    • /
    • pp.587-601
    • /
    • 2016
  • In this paper we suggest method for scalar recoding which is both secure against SPA and DPA. Suggested method is countermeasure to power analysis attack through scalar recoding using negative expression. Suggested method ensures safety of SPA by recoding the operation to apply same pattern to each digit. Also, by generating the random recoding output according to random number, safety of DPA is ensured. We also implement precomputation table and modified scalar addition algorithm for addition to protect against SPA that targets digit's sign. Since suggested method itself can ensure safety to both SPA and DPA, it is more effective and efficient. Through suggested method, compared to previous scalar recoding that ensures safety to SPA and DPA, operation efficiency is increased by 11%.