• 제목/요약/키워드: Curve Blending

검색결과 33건 처리시간 0.021초

1차원 시스톨릭 어레이 프로세서를 이용한 고속 곡선 발생기에 관한 연구 (A Study on the High Speed Curve Generator Using 1-Dimensional Systolic Array Processor)

  • 김용성;조원경
    • 전자공학회논문지B
    • /
    • 제31B권5호
    • /
    • pp.1-11
    • /
    • 1994
  • In computer graphics since objects atre constructed by lines and curves, the high-speed curve generator is indispensible for computer aided design and simulatation. Since the functions of graphic generation can be represented as a series of matrix operations, in this paper, two kind of the high-speed Bezier curve generator that uses matrix equation and a recursive relation for Bezier polynomials are designed. And B-spline curve generator is designed using interdependence of B-spline blending functions. As the result of the comparison of designed curve generator and reference [5], [6] in the operation time and number of operators, the curve generator with 1-dimensional systolic array processor for matrix vector operation that uses matrix equation for Bezier curve is more effective.

  • PDF

쌍3차 스플라인곡면 식에 의한 이동곡면의 표현 (Representation of Sweep Surface in Bicubic Spline surface Form)

  • 전차수;조형래;박세형
    • 대한기계학회논문집
    • /
    • 제19권4호
    • /
    • pp.1005-1012
    • /
    • 1995
  • This paper proposes a new approach for modeling sweep surfaces. The overall modeling procedure consists of following steps : (1)remeshing the section curves based on the curve lengths ; (2)remeshing the guide curve and the boundary curves based on a given sweeping rule ; (3)obtaining intermediate section curves at the remeshed points of the guide curve by blending the initial section curves ; (4)compensation of the intermediate section curves ; (5)interpolating the initial and intermediate curves using Hermite interpolant. The resulting sweep surface is expressed in a G$^{2}$ bicubic parametric spline surface.

3차 Ball 곡선을 이용한 자유 형태 곡면 근사 방법 (The Approximation of Free-form Surface using Cubic Ball Curve)

  • 이아리;심재홍
    • 한국정보처리학회논문지
    • /
    • 제7권4호
    • /
    • pp.1271-1278
    • /
    • 2000
  • A general curve and surface is a basic method to generate Free-form object using the fundamental properties of blending function. In typical method, there is an overhead of calculating to present Free-form object with the line segments and interpolation algorithm, In this paper, for resolving this problem efficiently, it will propose the flexible Free-form curves/surfaces using Ball curve shape-preserving property. This method includes Geometric Continuity that is needed to design Free-form Surface of high degree consisted with many curves. Also, when lots of data are reduced using Geometric Property of Free-form curves, the shape-preserving property of resulting object can be maintained, then it can represent any Free-form object with less calculating .

  • PDF

An approach of using ideal grading curve and coating paste thickness to evaluate the performances of concrete-(1) Theory and formulation

  • Wang, H.Y.;Hwang, C.L.;Yeh, S.T.
    • Computers and Concrete
    • /
    • 제10권1호
    • /
    • pp.19-33
    • /
    • 2012
  • The performance of a concrete is significantly influenced by its mixture proportion and the coating thickness on aggregate surface. The concrete in this study is designed by estimating the blending ratio of aggregate using a densified mixture design algorithm (DMDA) based on an ideal grading curve and estimating the paste volume as the sum of the amount of paste needed to provide an assigned coating paste thickness. So as to obtain appropriate concrete amount, and thus can accurately estimate the property of concrete. Deduction of this mix design formula is simple and easy understanding, and meanwhile to obtain result is fast. This estimation model of mix design is expected to reward to industry and effectively upgrade concrete quality.

비지어곡면에 의한 블렌드곡면의 모델링 (Modeling of Blend Surfaces by Bezier Surface Patches)

  • 주상윤
    • 한국CDE학회논문집
    • /
    • 제2권2호
    • /
    • pp.122-129
    • /
    • 1997
  • Ball rolling blending is a popular technique for blending between parametric surfaces. The ball rolling blend surface is conceptually a trajectory of a ball rolling between two base sufaces. It is constructed by sweeping a circular arc along a ball contact curve pair. Since a ball rolling blend surfaces does not have a polynomial form like a Bezier surface patch, it is impossible to apply this method directly to a commercial CAD/CAM system. In this paper an algorithm is developed to approximate a ball rolling blend surface into Bezier surface patches. Least square method is applied to obtain proper Bezier surface patches under a given tolerance. The Bezier surface patches have degree three or more and guarantee VC1-continuity.

  • PDF

범용 CAD 프로그램에서의 응용을 위한 선형 곡면화 방법론에 관한 연구 (A Study on Surface Modeling of Hull forms for General purpose CAD program)

  • 이준호;김동준
    • 대한조선학회논문집
    • /
    • 제41권1호
    • /
    • pp.75-81
    • /
    • 2004
  • In this study surface modeling .method with 3D curve net is proposed. For surface modeling, ship hull was divided into several parts, Generated surface was loaded general purpose CAD program through IGES file format, and the quality of generated surface model was checked by CATIA's internal function. Lastly it is tried to find a method for improving the accuracy of surface connection by using the blending method in CATIA and the result was discussed.

곡면 모델링 커널 개발 (Development of a Surface Modeling Kernel)

  • 전차수;구미정;박세형
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.774-778
    • /
    • 1996
  • Developed in this research is a surface modeling kernel for various CAD/CAM applications. Its internal surface representations are rational parametric polynomials, which are generalizations of nonrational Bezier, Ferguson, Coons and NURBS surface, and are very fast in evaluation. The kernel is designed under the OOP concepts and coded in C++ on PCs. The present implementation of the kernel supports surface construction methods, such as point data interpolation, skinning, sweeping and blending. It also has NURBS conversion routines and offers the IGES and ZES format for geometric information exchange. It includes some geometric processing routines, such as surface/surface intersection, curve/surface intersection, curve projection and so forth. We are continuing to work with the kernel and eventually develop a B-Rep based solid modeler.

  • PDF

Parametric Design of Complex Hull Forms

  • Kim Hyun-Cheol;Nowacki Horst
    • Journal of Ship and Ocean Technology
    • /
    • 제9권1호
    • /
    • pp.47-63
    • /
    • 2005
  • In the present study, we suggest a new method for designing complex ship hull forms with multiple domain B-spline surfaces accounting for their topological arrangement, where all subdomains are fully defined in terms of form parameters, e.g., positional, differential and integral descriptors. For the construction of complex hull forms, free-form elementary models such as forebody, afterbody and bulbs are united by Boolean operation and blending surfaces in compliance with the sectional area curve (SAC) of the whole ship. This new design process in this paper is called Sectional Area Curve-Balanced Parametric Design (SAC-BPD).

Explicit Matrix Expressions of Progressive Iterative Approximation

  • Chen, Jie;Wang, Guo-Jin
    • International Journal of CAD/CAM
    • /
    • 제13권1호
    • /
    • pp.1-11
    • /
    • 2013
  • Just by adjusting the control points iteratively, progressive iterative approximation (PIA) presents an intuitive and straightforward scheme such that the resulting limit curve (surface) can interpolate the original data points. In order to obtain more flexibility, adjusting only a subset of the control points, a new method called local progressive iterative approximation (LPIA) has also been proposed. But to this day, there are two problems about PIA and LPIA: (1) Only an approximation process is discussed, but the accurate convergence curves (surfaces) are not given. (2) In order to obtain an interpolating curve (surface) with high accuracy, recursion computations are needed time after time, which result in a large workload. To overcome these limitations, this paper gives an explicit matrix expression of the control points of the limit curve (surface) by the PIA or LPIA method, and proves that the column vector consisting of the control points of the PIA's limit curve (or surface) can be obtained by multiplying the column vector consisting of the original data points on the left by the inverse matrix of the collocation matrix (or the Kronecker product of the collocation matrices in two direction) of the blending basis at the parametric values chosen by the original data points. Analogously, the control points of the LPIA's limit curve (or surface) can also be calculated by one-step. Furthermore, the $G^1$ joining conditions between two adjacent limit curves obtained from two neighboring data points sets are derived. Finally, a simple LPIA method is given to make the given tangential conditions at the endpoints can be satisfied by the limit curve.

NBR/PVC의 polymer blend에 관(關)한 연구(硏究)(제2보(第2報)) (Studies on NBR/PVC polymer blend (part 2))

  • 허동섭;이정근
    • Elastomers and Composites
    • /
    • 제6권1호
    • /
    • pp.71-81
    • /
    • 1971
  • The intention of this study is to investigate the properties of polymer blend, NBR/PVC vulcanizates and blending procedures such as roll-mixing temperatures and sequences for polymer blending of NBR and PVC(resin type). The results obtained are as follows: 1. The roll temperature applied for polymer blending is around $150^{\circ}C$. At this temperature region, the degradation of rubber stock, which may be caused by heat, can be minimized and mill processing in practical application in industries can also be facilitated. 2. It is obviously necessary that a small amount of plasticizers should be added to the stock for improving processibility of roll mixing and physical properties. 3. On roll-mixing sequence, it is more effective that PVC compounded with plasticizer is added to NBR milled on hot roll. 4. The vulcanizates of the blends with different degree of polymerization of PVC ale similar to one another in properties. 5. NBR/PVC(70/30) blends shows the better physical characters than eve,-made foreign latex blend except abrasion-resistance. 6. As PVC addition ratio is increased, the physical properties such as resistance to ozone, tear, heat and oil and tensile strength, modulus, hardness have also improved, on the other hand, tension set and rebound character decreased. 7. The curve of ultimate elongation have point of inflection at the ratio of $30\sim40$ part of PVC. 8. While CR is blended, the physical properties such as brittle point, rebound and resistance to oil in high temperature have improved. 9. Polymer blend of NBR and domestic PVC is applied for the industrial utility such as rubber sole and heel, electric wire cover and oil-resistant packing, coating and gasket, printing roll, film for food packing etc.

  • PDF