• Title/Summary/Keyword: Curvature Shape

Search Result 524, Processing Time 0.025 seconds

A Study on LIT Girder Performance Improvement (LIT 거더 성능 개선에 대한 연구)

  • Kim, Sung;Park, Sungjin
    • Journal of Urban Science
    • /
    • v.11 no.2
    • /
    • pp.19-24
    • /
    • 2022
  • Conventional RC beams for crossing small and medium-sized rivers do not have a cross-sectional area, so the floating debris is accumulated and disasters such as damage to bridges occur. To improve this, the PSC method was invented. However, this also had problems such as transverse curvature, increase in dead weight due to cross-sectional shape, and negative moment generated during serialization, so it was necessary to develop a new type of girder. Therefore, it was intended to propose a LIT(Leton Interaction Thrust) girder bridge that is safer and has better performance than the conventional PSC girder with improved section efficiency. Unlike existing girder bridges, the LIT girder has the feature that the change in the strands of the entire girder occurs only in the vertical direction when the first tension is applied because the tendon arrangement is symmetrical by applying the raised portion. In addition, slab continuation generates a secondary moment that is advantageous to the continuous point, effectively controlling the negative moment and preventing the corrosion of the tendon. The dimensions of the cross section were determined, and the arrangement of the strands was designed to conduct structural analysis and detailed analysis. As a result of the structural analysis, the stress of the girder showed results within the allowable compressive stress, and the deflection showed the result within the allowable deflection. showed results. In addition, a detailed analysis was performed to examine the stress distribution around the girder body and the anchorage area and the stress distribution of the embossed portion, and as a result, the stress of the girder body due to the tension force showed a stable level.

Quantitative Evaluation of Wear Resistance of Stamping Tool with Respect to Hardness of Tool Materials in Cold Stamping of TRIP1180 Steel Sheets (TRIP1180 판재의 냉간 스탬핑공정에서 금형강의 경도 특성에 따른 내마모성 평가)

  • Bang, J.H.;Bae, G.;Song, J.H.;Kim, H.G.;Lee, M.G.
    • Transactions of Materials Processing
    • /
    • v.31 no.3
    • /
    • pp.129-135
    • /
    • 2022
  • The purpose of this study was to quantitatively evaluate the influence of hardness of tool materials on wear resistance in the sheet metal forming process. Punches used in the wear test were made of STD-11 and K340 tool material, and the tempering temperature was set to 530℃ and 500℃, respectively, to control the hardness of the tool materials. The punches mimic the shape of stamping tool of automotive body component to reflect its plastic deformation, and are designed to concentrate wear on the curvature region of punches. Progressive die and coil sheet were used to save time, cost, and raw sheet materials. By quantitatively measuring the wear depth of the punches, the wear behavior and mechanism of the punches were investigated, and characteristics of hardness and wear resistance according to tool materials and tempering temperatures were evaluated. Testing results indicate that the punch made of K340 tool steel with higher hardness had better wear resistance than that of STD-11 tool steel, and the hardness and wear resistance of tool steel were significantly impacted by the tempering temperature.

A numerical study on feasibility of the circled fiber reinforced polymer (FRP) panel for a tunnel lining structure (터널 라이닝 구조체로서 곡면 섬유강화 복합재료의 적용성 검토를 위한 수치해석적 연구)

  • Lee, Gyu-Phil;Shin, Hyu-Soung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.6
    • /
    • pp.451-461
    • /
    • 2010
  • Utilization of the fiber reinforced polymer (FRP) material has been enlarged as a substitution material to the general construction materials having certain long-term problems such as corrosion, etc. However, it could be difficult to apply the FRP material, which has a linear shape generally, to an arch-shaped tunnel structure. Therefore, an attempt has been made in this study to develop a device to form a designed cross section of FRP material by pulling out with a curvature. A sample of the circled FRP product was successfully produced and then the sample has been tested to identify its physical characteristics. Then, intensive feasibility studies on the circled FRP panel to be used for a tunnel lining structure have been carried out by numerical analyses. As a result, it appears that the new circled FRP-concrete composite panel has a high capability to be used for a tunnel lining material without any structural problem.

Analysis on Improving Power of Thermal Radiation Shield in Low Pressure Chamber of AMTEC (AMTEC내 저압용기에서의 열복사차단막 형상에 따른 발전량 향상 해석)

  • Chung, Won-Sik;Chi, Ri-Guang;Lee, Wook-Hyun;Lee, Kye-Bock;Rhi, Seok-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.54-62
    • /
    • 2016
  • The most efficient system for converting heat to electricity, AMTEC (Alkali Metal Thermal-to-Electric Convertor), is a device that directly converts heat energy to electricity using an alkali metal (sodium) as the working fluid. The AMTEC consists of a low pressure chamber, high pressure chamber, BASE (Beta-Alumina Solid Electrolyte), and artery wick. The main heat loss of the AMTEC system occurs in the low pressure chamber. A high power generation rate is thought to be obtainable by using a high temperature in the BASE. Therefore, to reduce the radiation heat loss, 6 types of radiation shields were examined to reduce the radiative heat loss in the low pressure chamber. The power generation rate of the AMTEC varied depending on the shape of the radiation shield. CFD (Computational Fluid Dynamics) analyses were carried out to optimize the shape of the radiation shield. As a result, the optimum radiation shield was found to consist of a curvature formed at the vertical point, in which case the dimensionless temperature (condenser temperature/BASE temperature) is approximately 0.665 and the maximum power generated is calculated to be 17.69W. Increasing the distance beween the BASE and condenser leads to an increase in the power generated, and the power generated with the longest distance was 17.58 W. The shields with multiple holes and multiple horizontal layers showed power reduction rates of 0.91 W and 2.06 W, respectively.

A Study on the Characteristics of Bridge Bearings Behavior by Finite Element Analysis and Model Test (유한요소 해석과 모형실험을 통한 교량받침의 거동특성 연구)

  • Lee, Jae-Uk;Jung, Hie-Young;Oh, Ju;Park, Jin-Young;Kim, See-Dong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.96-106
    • /
    • 2014
  • The increased vibration level of the railway bridge could make significant noise and, also, cause structural damages such as fatigue cracks. Related to these subjects, a spherical elastomeric bridge bearing, which is layered by hemispherical rubber and steel plates, was investigated in terms of its vibration performance. Several different shape factors could be considered by changing the curvature of hemispherical surface and size in rubber and steel plate thicknesses in the manufacturing stage. The performance of the spherical elastomeric bearing for the reduction in vibration was compared with that of the conventional bearing by performing vibration experiments on a scale-downed model. The rubber material characteristics and spherical shape are found to be important parameters in reducing the bridge vibration.

Free Vibration Analysis of Horizontally Curved I-Girder Bridges using the Finite Element Method (유한요소법을 이용한 수평곡선 I형교의 자유진동해석)

  • Yoon, Ki Yong;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.1 s.34
    • /
    • pp.47-61
    • /
    • 1998
  • The behavior of horizontally curved I-girder bridges is complex because the flexural and torsional behavior of curved girders are coupled due to their initial curvature. Also, the behavior is affected by cross beams. To investigate the behavior of horizontally curved I-girder bridges, it is necessary to consider curved girders with cross beams. In order to perform free vibration analyses of horizontally curved I-girder bridges, a finite element formulation is presented here and a finite element analysis program is developed. The formulation that is presented here consists of curved and straight beam elements, including the warping degree of freedom. Based on the theory of thin-walled curved beams, the shape functions of the curved beam elements are derived from homogeneous solutions of the static equilibrium equations. Third-order hermits polynomials are used to form the shape functions of the straight beam elements. In the finite element analysis program, global stiffness and mass matrix are composed, based on the Cartesian coordinate system. The Gupta method is used to efficiently solve the eigenvalue problem. Comparing the results of several examples here with those of previous studies, the formulation presented is verified. The validity of the program developed is shown by comparing results with those analyzed by the shell element.

  • PDF

Evaluation of Shape Deviation in Phase Change Material Molds Subjected to Hydration Heat During Ultra-High Performance Concrete Free-form Panel Fabrication (UHPC 비정형 패널 제작 시 수화열에 의한 PCM 거푸집의 형상오차 분석)

  • Kim, Hong-Yeon;Cha, Jae-Hyeok;Youn, Jong-Young;Kim, Sung-Jin;Lee, Donghoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.3
    • /
    • pp.251-260
    • /
    • 2023
  • The construction of free-form structures with intricate curved exteriors necessitates the use of bespoke molds. To fulfill this requirement, a blend of Phase Change Material(PCM) and Ultra-High Performance Concrete(UHPC) is utilized. PCM endows the solution with recyclability, while UHPC facilitates the effortless execution of curvature in the mold fabrication process. However, it's worth mentioning that the melting point of PCM hovers around 58-64℃, and the heat emanating from UHPC's hydration process can potentially jeopardize the integrity of the PCM mold. Hence, experimental validation of the mold shape is a prerequisite. In the conducted experiment, UHPC was poured into two distinct mold types: one that incorporated a 3mm silicone sheet mounted on the fabricated PCM mold(Panel A), and the other devoid of the silicone sheet(Panel B). The experimental outcomes revealed that Panel A possessed a thickness of 3.793mm, while Panel B exhibited a thickness of 5.72mm. This suggests that the mold lacking the silicone sheet(Panel B) was more susceptible to the thermal effects of hydration. These investigations furnish invaluable fundamental data for the manufacturing of ultra-high strength irregular panels and PCM molds. They contribute substantially to the enrichment of comprehension and application of these materials within the realm of construction.

A Morphologic Study of head and face for Sasang Constitution (사상체질별(四象體質別) 두면부(頭面部)의 형태학적(形態學的) 특징(特徵))

  • Ko, Byung-Hee;Song, Il-Byung;Cho, Yong-Jin;Choi, Chang-Seok;Kim, Jong-Weon;Hong, Suck-CHull;Lee, Eui-Ju;Lee, Sang-Yong;Seo, Jeong-Sug
    • Journal of Sasang Constitutional Medicine
    • /
    • v.8 no.1
    • /
    • pp.101-186
    • /
    • 1996
  • The clinical application of constitutional Diagnosis is the most important part of Sasang constitutional medicine. It has been studied in various way. However, the study of morphologic characteristics on the face is applied for the first time. For quantitative analysis of the correlation between the sasang constitution and the shape of the face, the head-facial part of 170 cases were measured by Martin's measurement and analysis of a) the measurement value of height and the component ratio from the Gnathion to each part of face by constitution. b) the measurement value of depth and the component ratio from T-projected to each part of the face by constitution. c) the measurement value of breadth and component ratio between each parts of the facial breadth by constitution. d) the ratio of square on every part of face by constitution. e) the characteristics on each part of the face by constitution. f) the contour line of the forehead. g) the result of discriminant analysis about the constitution. Authors obtained the results from the study as follows; 1. The characteristics of Taeum-IN (1) The measurement value of Height, Breadth, T-Projected had a tendency to maximum value in general. (2) The value of lower opthal height and the square of lower opthal part was maximum. (3) The value of Pronasal T-projected length and Subnasal T-projected length was minimum, so Taeum-In has characteristics of depression in middle face, nasal part. (4) In the ratio of Breadth, T-Projected, T-Projected was minimum. (5) It was maximum that the square of nose, Alare, Middle face, Lower face and it was minimum that the square of eye. The square of nose, Alare, Middle facc, Lower face was maximum and the square of eye was minimum. (6) The curvature of the eyebrow was minimum. (7) The projection of jaw (Pogonion T-projection length) was maximum. (8) The breadth of eye was minimum. (9) There was a tendency that the projection of the forehead to the right in general. 2. The characteristics of Soeum-In (1) In all cases of projected length the measurement value was minimum. (2) The value of lower opthal height and the square of lower opthal part was minimum. (3) By the Pupulare T-projected length, the value of Pronasal T-projected length and Subnasal T-projected length was minimum, so the Soeum In's face shape is flat. (4) The square of eye, mouth, forehead was maximum and the square of nose, Alare, Middle face, Lower face was minimum. (5) The curvature of the eyebrow was maximum. (6) The projection of mouth was minimum. (7) The jaw was flat. (8) The breadth of eye was maximum. (9) There was a tendency that the projection of the forehead to the left in general. 3. The characteristics of Soyang-In. (1) In most cases of 고경 length the measurement value was minimum. (2) By the Pupulare T-projected length, each ratio of projected length was maximum, so the Soyang-In's face shape has many protrusions (3) In the ratio of Breadth, T-Projected, T-Projected was maximum. (4) The square of mouth was minimum. (5) The inclination of the forehead was minimum. (6) The projection of mouth was maximum. (7) The breadth of eye was minimum. (8) There was a tendency that the projection of the forehead to the left in general. (9) The middle face was protruded. 4. Discriminant about the constitution. According to the result of discriminant, the accuracy probability of discriminant was 85.58% in total and Taeum-In was 90.5%, Soeum-In was 70.8%, Soyang-In was 89.5%. The accuracy probability of discriminant about 3 constitutional group increased by 49.03% than the accident probility 36.55% 5. Suggestion (1) The study which gather and analysis the data should be continued. (2) The study which subdivide the characteristics of each part of the face by the constitution should be continued. (3) The analysis method about Moire should be supplement. (4) The study about the morphologic characteristics of the whole body should be continued. (5) Computer program of constitution diagnosis should be developed. (6) To increase utility of this method, the measurement should be automation.

  • PDF

Comparison of Crown Shape and Amount of Tooth Reduction for Primary Anterior Prefabricated Crowns (유전치 기성 크라운의 형태 및 치질 삭제량 비교)

  • Kim, Soyoung;Lim, Youjin;Lee, Sangho;Lee, Nanyoung;Jih, Myeongkwan
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.46 no.1
    • /
    • pp.64-75
    • /
    • 2019
  • The purpose of this study was to obtain instructions for size selection of prefabricated crown and tooth reduction by 3-dimensional analysis of the size and shape of the maxillary primary central and lateral incisors and prefabricated crowns (celluloid strip, resin veneered stainless steel, and zirconia crowns). The maxillary primary central and lateral incisors of 300 Korean children was scanned with three types of prefabricated crown to create standard three-dimensional tooth models and prefabricated crowns. The shapes of the prefabricated crowns and natural teeth were compared according to four parameters (mesio-distal width, height, labio-palatal width, and labial surface curvature coefficient) and calculated the amount of tooth reduction required for each prefabricated crown. The size 2 resin veneered stainless steel crown, size 1 zirconia crown, and size 2 celluloid strip crown were most similar in shape to the primary central incisor. The size 3 rein veneered stainless steel crown, size 2 zirconia crown, and size 3 celluloid strip crown were most similar to the primary lateral incisor. The amount of tooth reduction was similar in both maxillary primary central and lateral incisors. The incisal reduction was greatest for the zirconia crown. At the proximal surface, the zirconia and celluloid strip crowns required a similar amount of tooth reduction, but more than the resin veneered stainless steel crown. The labial surface reduction was greatest for the zirconia crown. The degree of lingual surface reduction was not significant among the three prefabricated crowns. Among the assessment parameters, mesio-distal crown width was the most important for choosing a prefabricated crown closest to the actual size of the natural crown.

Evaluation for Rock Cleavage Using Distribution of Microcrack Lengths and Spacings (3) (미세균열의 길이 및 간격 분포를 이용한 결의 평가(3))

  • Park, Deok-Won;Park, Eui-Seob;Jung, Yong-Bok;Lee, Tae-Jong;Song, Yoon-Ho
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.1-13
    • /
    • 2019
  • The characteristics of the rock cleavage of Jurassic Geochang granite were analysed using the parameters from the length and spacing-cumulative frequency diagrams. The evaluation for three planes and three rock cleavages was performed using the 25 parameters such as (1~2) slope angle(${\alpha}^{\circ}$and ${\beta}^{\circ}$), (3) intersection angle(${\alpha}-{\beta}^{\circ}$), (4) exponent difference(${\lambda}_S-{\lambda}_L$), (5~12) length of line(oa, ob, ol, os, ss', ll' and sl') and (13~15) length ratio(ol/os, ss'/ll' and ll'/sl'), (16) mean length((ss'+ll')/2), (17~23) area (${\Delta}oaa^{\prime}$, ${\Delta}obb^{\prime}$, ${\Delta}obb^{\prime}$, ${\Delta}oaa_a^{\prime}$, ${\Delta}obb_a^{\prime}$, ${\Delta}ll^{\prime}s^{\prime}$, ${\Delta}ss^{\prime}l^{\prime}$ and ⏢$ll^{\prime}ss^{\prime}$) and (24~25) area difference(${\Delta}obb^{\prime}-{\Delta}oaa^{\prime}$ and ${\Delta}obb_a^{\prime}-{\Delta}oaa_a^{\prime}$). Firstly, the values of the 11 parameters(group I: No. 1, 3~4, 7, 9~10, 13, 15~16, 20 and 25), the 3 parameters(group II: No. 5, 8 and 17) and the 2 parameters(group III: No. 12 and 22) are in orders of H(hardway) < G(grain) < R(rift), R < G < H and G < H < R, respectively. On the contrary, the values of parameters belonging to the above three groups show reverse orders for three planes. Secondly, the generalized chart for three planes and three rock cleavages were made. From the related chart, the distribution types formed by the two diagrams related to lengths and spacings were derived. The diagrams related to spacings show upward curvature in the chart of rift plane(G1 & H1, R') and hardway(H1 & H2, H). On the contrary, the diagrams related to lengths show downward curvature. These two diagrams take the form of a convex lens in the upper section. Besides, the two diagrams cross each other in the lower section. The overall shape formed by the above two diagrams between three planes($H^{\prime}{\rightarrow}G^{\prime}{\rightarrow}R^{\prime}$) and three rock cleavages($R{\rightarrow}G{\rightarrow}H$) display in reverse order. Lastly, these types of correlation analysis is useful for discriminating three quarrying planes.