• Title/Summary/Keyword: Curtain wall Panel System

Search Result 9, Processing Time 0.023 seconds

Performance Evaluations of Mock-up Tests for ALC Panel Curtain Wall in Building Exterior (ALC 패널을 활용한 건축물 외장 커튼월에 대한 Mock-up Test 성능 평가 연구)

  • Kim, Young-Ho;Lee, Yong-Soo
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.13 no.4
    • /
    • pp.25-32
    • /
    • 2013
  • The green building is one of biggest factors to go the goal of energy saving and environmental conservation, reduction of energy consumption, friendly energy technology, recycling of resource, and environmental pollution reduction technology. The purpose of these green buildings realized by the energy-saving technology such as the exterior materials or curtain wall system. The curtain wall system is a element that come to insulated portions of building envelope that results in heat loss. The purpose of this paper is to carried out mock-up tests for exterior wall used in autoclaved lightweight concrete panels in green building practices. Mock-up test execute a mixed process between standard test procedure and complex test procedure based on AAMA 501(American Society for Testing and Materials) and ASTM 283, ASTM 330(American Society for Testing and Materials). In results, tests meet the requirements that grant values in steps of procedures provided on ASTM and AAMA. ALC panel is suitable for a exterior wall product to be gratified thermal cycling performance and structural capacity, deflection(H/200) and lateral displacement(H/50), for curtain walls.

Application of Supply Chain Management Concept to the Various Types of Curtain Wall Construction (커튼월의 공법 및 조달 유형에 따른 SCM 적용방안)

  • Moon Woo-Kyoung;Yun Soo-Won;Kim Yea-Sang;Chin Sangyoon;Park Ji-Hoon
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2004.11a
    • /
    • pp.612-615
    • /
    • 2004
  • Today, the curtain wall is used in many construction projects because of excellent economical efficiency and constructability. The life-cycle process of curtain wall construction consists of the architectural design, curtain wall design, manufacturing, const겨ction, and maintenance phase which has become one of the most important objects that have to be managed. Since the general management method focused on each separated phase, it has accompanied many problems such as increases of the cost and duration, and loss of productivity. To solve these problems, it is necessa교 to have a new management method based on supply chain management. Thus this research analysed the processes of stick system, semi-unit system, unit system, and panel system classified by the type of the curtain wall, and suggested proper methods of application of SCM concept to each type of curtain wall construction.

  • PDF

Applications and Analysis of Exterior Paints for the Curtain Wall Panel System based on the Autoclaved Lightweight Concrete(ALC) (경량기포콘크리트(ALC) 패널을 건축물 외장 커튼월에 적용을 위한 도료의 기초적 연구)

  • Lee, Yong-Soo;La, Hyun-Ju
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.12 no.3
    • /
    • pp.59-66
    • /
    • 2012
  • Autoclaved Lightweight Concrete(ALC) features such as a high performance insulation, the fire resistance, the advantage of easy handing construction, and lightweight panels applied the curtain wall system. ALC materials are certified as non-toxic environmental and eco-friendly productions. But ALC external panels mixed with blast furnace slag pounder and silica fume have to be coated with a stucco compound or plaster because of resisting the ambient environment. This study is that mixing tests to evaluate a performance analysis of exterior paints to be make-up pigments(organic or inorganic) coated with panel surface. Testing compared by KS F 2476; flow test, KS F 2426; compression strength test, KS F 2762; bond strength test. In results, the case of the inorganic binder, ratio of alumina cement : anhydrite is 90:10 to 80:20 at the highest level of intensity. In the case of the organic binder, adhesive strength rating at surface of ALC, the pullout strength is below 0.5 $N/mm^2$ but the normal concrete is over 2.0$N/mm^2$. A contents ratio of EVA resin is more than 3% and then bond strength is effectively.

A Study on the Construction Performance of Curtain Wall Systems Using Fire-Resistant & Light-Weight Inorganic Composite Foam Board (내화성 경량 무기 발포보드를 이용한 커튼월 시스템의 시공성능에 관한 연구)

  • Koo, Young-Ah;Kim, Seong-Eun;Oh, Chang-Won
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.2
    • /
    • pp.127-134
    • /
    • 2014
  • This study had the goal of analyzing the economic feasibility and constructability of a fire resistant curtain wall system using Light-weight Inorganic Composite Foam Board(LI-CFB). LI-CFBs, new materials with excellent fire resistance are being developed for use as the back panel of curtain wall and their fire resistance has already been analyzed through actual tests in earlier studies. In this study, a mock-up test involving the installation of the fire resistant curtain wall system on an actual building was conducted, and the system was compared with a common curtain wall system. This system is applied in the same way as a common curtain wall system. But the cutting LI-CFBs, which are brought from a factory, are used in the system and attached on the frame (mullion and transom). Even though the system requires more working time than the existing system, the LI-CFBs back panels are easy to cut and do not produce dust. Also, the panels are able to be assured the quality by checking damaged parts easily. Besides having a high level of fire resistance, the system's economic feasibility and constructability meets or exceeds those of the existing system.

Patent Investigations and Analysis for the Curtain Wall System based on the Autoclaved Lightweight Concrete(ALC) (경량기포콘크리트 재료를 활용한 커튼월 구법에 관한 일본 특허기술의 분석 연구)

  • Kim, Young-Ho
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.12 no.1
    • /
    • pp.81-88
    • /
    • 2012
  • According to the survey results of the Ministry of Land, Transport and Maritime Affairs in the end of December 2011, the residential buildings was reported as 67.3% of 4,529,464 buildings. Reflected in the national energy policy, the residential building is expected that greater energy savings. To have realized the Passive House Project used the Autoclaved Lightweight Concrete(ALC) material on exterior wall, we take advantage of a very large energy savings. Therefore, this study investigate the patent documents of three major companies, SUMITOMO, CLION, ASAHI KASEI, in Japan. and analyze technical flow and benchmarking patent. As a result, the Sliding method or the Rocking method of ALC panels how to install is to be superior to high-performance drift and safety by a earthquake. And the embedded anchor in panel needs to improve the shape and the strength of bearing. Thus installation technology of the ALC exterior wall investigated in japanese patent documents is expected to the fastening units and anchors.

Prediction of seismic cracking capacity of glazing systems

  • O'Brien, William C. Jr.;Memari, Ali M.;Eeri, M.
    • Earthquakes and Structures
    • /
    • v.8 no.1
    • /
    • pp.101-132
    • /
    • 2015
  • This research formulates a closed-form equation to predict a glass panel cracking failure drift for several curtain wall and storefront systems. An evaluation of the ASCE 7-10 equation for Dclear, which is the drift corresponding to glass-to-frame contact, shows that the kinematic modeling assumed for formulation of the equation is sound. The equation proposed in this paper builds on the ASCE equation and offers a revision of that equation to predict drift corresponding to cracking failure by considering glazing characteristics such as glass type, glass panel configuration, and system type. The formulation of the proposed equation and corresponding analyses with the ASCE equation is based on compiled experimental data of twenty-two different glass systems configurations tested over the past decade. A final comparative analysis between the ASCE equation and the proposed equation shows that the latter can predict the drift corresponding to glass cracking failure more accurately.

Strength Characteristics according to the mixed CaO/$SiO_2$ Ratio to Autoclaved Aerated Concrete(AAC) used on the Exterior Panel in Buildings (건물 외벽 패널용 경량기포콘크리트(AAC)의 CaO/$SiO_2$ 혼합비에 따른 강도 특성 평가)

  • Kim, Young-Ho
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.11 no.3
    • /
    • pp.35-42
    • /
    • 2011
  • The exterior system of buildings, which is the typical curtain wall, has been made with glass and metal. Theses materials, however, have weaknesses such as inadequate insulating quality, short durability, combustibility and toxic substance. On the other hand, Autoclaved Aerated Concrete(AAC) or Autoclaved Lightweight Concrete(ALC) possess the great energy efficiency and the superb insulating quality as substitute of existing exterior system materials. In this research, strength characteristics and bubble dispersion of hydrothermal synthesis process of AAC based on CaO/$SiO_2$(C/S) ratio are analyzed. C/S ratio is determinated and bubble distribution and compressive strength are studied through the test of varied water-to-solid mineral ratio(W/S). In hydrothermal synthesis program, final C/S ratio is determined as 0.7 consider of the manufacturing process and hydrothermal synthesis is done at $180^{\circ}C$ for 7 hours. The analysis shows slurry has about 2,300cP viscosity and 0.56 specific gravity therefore it is expected AAC has the appropriate facility in the manufacturing process and Hydrates of AAC's Expansion.

Development of the Passive Outside Insulation Composite Panel for Energy Self-Sufficiency of Building in the Region (지역 건축물의 에너지 자립을 위한 패시브 외단열 복합패널 개발 연구)

  • Moon, Sun-Wook
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.20 no.1
    • /
    • pp.11-18
    • /
    • 2018
  • The study aims to address the energy crisis and realize self-sufficiency of building as part of local energy independence, breaking away from a single concentrated energy supply system. It is intended to develop modules of the outside insulation composite panels that conform to passive certification criteria and for site-assembly systematization. The method of study first identifies trends and passive house in literature and advanced research. Second, the target performance for development is set, and the structural material is selected and designed to simulate performance. Third, a test specimen of the passive outside insulation curtain wall module designed is manufactured and constructed to test its heat transmission coefficient, condensation performance and airtightness. Finally, analyze performance test results, and explore and propose ways to improve the estimation and improvement of incomplete causes to achieve the goal. The final test results achieved the target performance of condensation and airtightness, and the heat transmission coefficient was $0.16W/(m^2{\cdot}K)$, which is $0.01W/(m^2{\cdot})K$ below the performance target. As for the lack of performance, we saw a need for a complementary design to account for simulation errors. It also provided an opportunity to recognize that insulated walls with performance can impact performance at small break. Thus, to be commercialized into a product with the need for improvement in the design of the joint parts, a management system is needed to increase the precision in the fabrication process.

Surveying for Barn Facilities of Dairy Cattle Farms by Holding Scale (젖소농가의 사육규모별 축사시설 분석)

  • Min, B.R.;Seo, K.W.;Choi, H.C.;Lee, D.W.
    • Journal of Animal Environmental Science
    • /
    • v.15 no.3
    • /
    • pp.251-262
    • /
    • 2009
  • In this research dairy cattle barn facilities what are 4,198 houses hold over 50 heads were surveyed by scale and province. Full-time farms hold over 50 heads breed total 344,514 heads. Each of Farms holds 50 to 99 heads were 79.8 percent and breed average 82.1 heads. Dairy cattle barns were constructed september 1995 averagely. Each of barns have $1,740.0\;m^2$ scale. The construction type of dairy cattle barn was almost litter barn type 84.0%, freestyle type 5.1%, mooring+litter ground type 17.3% and other types 4.4%. The litter barn type was popular in small farms. But in large farms, freestyle type was popular than small farms. The construction type of dairy cattle barn was almost litter barn type 84.0%, freestyle type 5.1%, moohng+ltter ground type 17.3% and other types 4.4%. Type of dairy cattle robotic milking system was pipeline 41.5%, herringbone 22.8% and tandem 35.8%. The pipeline type was popular in small farms which have 50~99 heads. But in large farms which have over 200 heads, tandem type was popular than small farms. Proportion of floor type of dairy cattle barn was almost litter type 94.9%. Scraper type was popular in large farms than in small farms. Proportion of roof type of dairy cattle barn was slate 32.5%, vinyl 16.3%, sunlight 11.1%, panel 10.9, zinc plate 8.8 and steel plate 8.3%. Roof type was lots of slate type before 1995. But vinyl type is increasing after 1995. Proportion of wall type of dairy cattle barn was almost open type 83.3% and winch-curtain 26.8%. Utilization period of dairy cattle barn was 9.2 years about milker, 7.9 years about automatic feeder, 9.2 years about waterer and 10.4 years about electric facilities. In this results, there were lots of improvements about automatic feeder.

  • PDF