• Title/Summary/Keyword: Current-Carrying Capacity

Search Result 128, Processing Time 0.021 seconds

Complementary Calculation of Current Carrying Capacity for Bare Overhead Conductors (가공선용 나전선의 허용전류 산정 보완)

  • Son, Hong-Gwan;Lee, Eun-Ung
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.5
    • /
    • pp.225-231
    • /
    • 2002
  • Many standards have Published for calculating of current carrying capacity for bare overhead conductors. Although these standards use the same basic heat balance concept, they use different approaches to calculate current carrying capacity, This paper looks at the four approaches used to calculate individual heat balance terms, at the overall impact of these terms on the current carrying capacity And this paper is proposed to the selection of proper standard and AC resistance within a country conditions for calculating the current carrying capacity of bare overhead conductors. So current carrying capacities are Proposed to some of conductors.

Development of innovative superconducting DC power cable

  • Matsushita, Teruo;Kiuchi, Masaru
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.3
    • /
    • pp.1-7
    • /
    • 2017
  • It is required to reduce the cost of superconducting cable to realize a superconducting DC power network that covers a wide area in order to utilize renewable energy. In this paper a new concept of innovative cable is introduced that can enhance the current-carrying capacity even though the same superconducting tape is used. Such a cable can be realized by designing an optimal winding structure in such a way that the angle between the tape and magnetic field becomes small. This idea was confirmed by preliminary experiments for a single layer model cable made of Bi-2223 tapes and REBCO coated conductors. Experiments of three and four layer cables of practical sizes were also done and it was found that the current-carrying capacity increased as theoretically predicted. If the critical current properties of commercial superconducting tapes are further improved in a parallel magnetic field, the enhancement will become pronounced and this technology will surely contribute to realization of superconducting DC power network.

Assessment of the Ultimate Load-Carrying Capacity of RC Beams (RC보의 극한 내하력 평가)

  • Youn, Seok-Goo;Kim, Eun-Kyum;Seol, Dae-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.331-334
    • /
    • 2005
  • Three RC beams are fabricated and tested to assess the ultimate load-carrying capacity. Depending on the crackings, the flexural stiffness of the RC beams are changed. However, these variations of the flexural stiffness do not influenced on the ultimate load-carrying capacity of the tested beams. Based on the behaviors of RC beams, the validation of the current assessment codes to discussed.

  • PDF

A Study on the Calculation of Transmission Current-Carrying Capacity by Horizontal Arrangement Type in the Installation Methods of 154kV XLPE 600㎟ Power Cable Buried Ducts in Ground (154kV XLPE 600㎟ 지중관로 수평배열 형태별 허용전류용량 산정에 관한 연구)

  • Kim, Se-Dong;Yoo, Sang-Bong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.3
    • /
    • pp.53-58
    • /
    • 2016
  • The underground transmission lines which have been built to expand the suppling facilities will be continuously accompanying with high growth of the increase of power demand in the metropolitan area in recent years. So, it is necessary to maximize the ability and reliability of power supply with the current-carrying capability of the underground transmission lines. Design criteria of KEPCO is to be presented and used frequently. But it has to be studied about the installation methods of power cable buried in ground. In this study, we used the program for calculating the current-carrying capability of underground transmission power cables. We estimated the maximum permissible current values by the horizontal arrangement in the installation methods of power cable(154kV XLPE $600mm^2$) buried ducts in ground. To see the general tendency of the analysis, we researched a statistical analysis with such parameters as the maximum permissible current values. Through the regression analysis, we analyze the most highly values of the maximum permissible current on the Ra type duct arrangement.

Analysis on Temperature Distribution and Current-Carrying Capacity of GIL Filled with Fluoronitriles-CO2 Gas Mixture

  • Chen, Geng;Tu, Youping;Wang, Cong;Cheng, Yi;Jiang, Han;Zhou, Hongyang;Jin, Hua
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2402-2411
    • /
    • 2018
  • Fluoronitriles-$CO_2$ gas mixtures are promising alternatives to $SF_6$ in environmentally-friendly gas-insulated transmission lines (GILs). Insulating gas heat transfer characteristics are of major significance for the current-carrying capacity design and operational state monitoring of GILs. In this paper, a three-dimensional calculation model was established for a GIL using the thermal-fluid coupled finite element method. The calculated results showed close agreement with experimentally measured data. The temperature distribution of a GIL filled with the Fluoronitriles-$CO_2$ mixture was obtained and compared with those of GILs filled with $CO_2$ and $SF_6$. Furthermore, the effects of the mixture ratio of the component gases and the gas pressure on the temperature rise and current-carrying capacity of the GIL were analyzed. Results indicated that the heat transfer performance of the Fluoronitriles-$CO_2$ gas mixture was better than that of $CO_2$ but worse than that of $SF_6$. When compared with $SF_6$, use of the Fluoronitriles-$CO_2$ gas mixture caused a reduction in the GIL's current-carrying capacity. In addition, increasing the Fluoronitriles gas component ratio or increasing the pressure of the insulating gas mixture could improve the heat dissipation and current-carrying capacity of the GIL. These research results can be used to design environmentally-friendly GILs containing Fluoronitriles-$CO_2$ gas mixtures.

Estimating Habitat Carrying Capacity of Shorebirds in the Intertidal Mudflat (조간대 갯벌에서의 도요·물떼새 서식지수용능력 추정)

  • Moon, Young-Min;Kim, Kwanmok;Yoo, Jeong-Chil
    • Ocean and Polar Research
    • /
    • v.42 no.1
    • /
    • pp.21-31
    • /
    • 2020
  • Shorebirds migrating along the East Asian-Australasian Flyway (EAAF) have been drastically decreasing due to continuous area loss and quality degradation of intertidal mudflats in the Yellow Sea. Evaluating the current habitat quality by means of habitat carrying capacity estimation could be effective in predicting the magnitude of impacts caused by habitat loss and provide better understanding to improve management strategies. In this study, we estimated the total biomass of Macrophthalmus japonicus, a main prey item of curlews in the Korea peninsular as habitat carrying capacity of the southern intertidal mudflat of Ganghwa Island, one of the key stopover sites for curlews in the EAAF. The result of the estimation took into account spatial differences of prey biomass and the available foraging time by tide patterns. Accordingly, it was found that curlew populations account for 30.26% of the habitat carrying capacity. When we calculated the mean biomass of the area and extrapolated it to the whole area to calculate the total biomass, it was found that the curlews have consumed 10.92% of the total biomass. The results show that the habitat carrying capacity of the southern intertidal mudflat of Ganghwa Island has decreased by 7.8% compared to a study conducted twenty years ago employing the same method. This study shows that there can be considerable differences in the results of habitat carrying capacity estimation between different methods, indicating that various environmental factors that affect the estimation results of habitat carrying capacity must be considered to achieve a more precise analysis and assessment.

Evaluation of Load Carrying Capacity of RC Slab Bridges Considering Moment Redistribution (모멘트 재분배를 고려한 RC 슬래브교의 내하력 평가)

  • Kim Hu Seung;Kim Dae Joong;Yum Hwan Seok;Kim Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.335-338
    • /
    • 2005
  • This paper describes a proposal for evaluation load carrying capacity of reinforced concrete slab bridges considering the moment redistribution. Recognition of redistribution of moments can be important because it permits a more realistic appraisal of the actual load-carrying capacity of a structure, thus leading to improved economy. In addition, it permits the designer to modify, within limits, the moment diagrams for which members are to be designed. The predicted results shows that moment redistribution are different from estimated by the current KCI, ACI 318-02, EC2 provisions, and propose reasonable load carrying capacity of the reinforced concrete slab bridge.

  • PDF

A Study on the Evaluation of Load Carrying Capacity of Highway Bridges based on Structural Reliability Methods (구조신뢰성(構造信賴性) 방법에 의한 도로교(道路橋)의 내하력(耐荷力) 평가(評價)에 관한 연구(硏究))

  • Shin, Jae Chul;Cho, Hyo Nam;Chang, Dong Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.107-120
    • /
    • 1987
  • This study is directed for the evolution of the rational approaches to the systematic evaluation of the load carrying capacity of bridges based on the practical and second moment reliability methods. A new approach for the evaluation of load carrying capacity of exsisting bridges is proposed in this study. The key idea behind this approach is in the fact that the load carrying capacity of an existing bridges under extreme traffic truck loadings may be measured by evaluating and classifying the reliability state of the bridge in terms of reliability index(${\beta}$). The rating formulas developed in this study are applied for the evaluation of load carrying capacity of the several actual deteriorated bridges inspected and tested for the capacity rating, and the results are compared with those calculated by using the current rating formulas. It may be concluded that the proposed rating formulas which is derived based on reliability methods, have to eventually replace the current rating formula when the basic statistical data for the resistance and load effects become available in the near future.

  • PDF

Evaluation of the Load Carrying Capacity of Existing Bridges Using Buckling Equation With Initial Deflection (초기처짐을 갖는 좌굴방정식을 이용한 교량의 내하력 평가)

  • Ki, Wan-Seo;Yang, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.8
    • /
    • pp.2032-2037
    • /
    • 2009
  • The load carrying capacity of bridge structures in public use is generally evaluated without considering their actual behavioral characteristics. This study examined common errors taking place in the evaluation of load carrying capacity of bridge structures. In order to account for their current behavioral characteristics such as the boundary condition, we evaluated the load carrying capacity of a bridge in terms of axial force, which was calculated by applying deflection to the buckling equation for members with initial imperfections, and in terms of bending moment obtained from deflection.