• Title/Summary/Keyword: Current zero

Search Result 1,507, Processing Time 0.033 seconds

Improved Zero-Current- Transition (ZCT) PWM Switch Cell (개선된 영전류 과도상태 PWM 스위치 셀)

  • Choi, Hang-Seok;Cho, B.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.950-952
    • /
    • 2001
  • This paper proposes a new zero-current transition (ZCT) pulse-width modulation (PWM) switch cell that overcomes the limitations of the conventional ZCT converters. The proposed ZCT cell provides zero-current-switching (ZCS) condition for the main switch and the auxiliary switch. The conduction loss and current stress of the main switch are minimized, since the circulating current for the soft switching does not flow through the main switch. The proposed ZCT PWM switch cell is suitable for the high power applications employing IGBTs. Design guidelines with a design example are described and verified by experimental results from the 1 kW prototype boost converter operating at 70kHz.

  • PDF

A Study on Arc Conductance of Puffer Type SF6 GCB at Current Zero Period (전류영점 영역에서 파퍼식 SF6 가스차단기의 아크 컨덕턴스에 관한 연구)

  • Chong, Jin-Kyo;Song, Ki-Dong;Lee, Woo-Young;Kim, Gyu-Tak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.328-332
    • /
    • 2010
  • The SLF(Short Line Fault) breaking capability test for high voltage class $SF_6$ GCB(Gas Circuit Breaker) was conducted. Simplified LC resonant circuit test facility was used for SLF breaking test. During test, Test current was measured by Rogwski coil and arc voltage was measured by voltage divider. Arc conductance was calculated by using these test results before 200ns at current zero. Critical arc conductance value at rated voltage 145kV class is about 2.3mS regardless of breaking current magnitude and arc conductance value at rated voltage 170kV class is about 2.6mS.

New Zero-Current-Switching PWM Converters (새로운 영전류 스위칭 방식의 PWM 컨버터)

  • Ma, Geun-Su;Kim, Yang-Mo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.9
    • /
    • pp.467-472
    • /
    • 2001
  • In conventional zero-current-switching(ZCS) PWM converters, zero-current turn-off for main switch without increasing voltage/current stresses is achieved at a fixed frequency. The switching loss, stress, and noise, however, can\`t be minimized because they adopt auxiliary switches turned off and main switches turned on under hard-switching condition. In this paper, new ZCS-PWM converters of which all switches are always operating with soft-switching condition are proposed. Therefore, the proposed ZCS-PWM converters are most suitable for systems requiring high-power density Breadboarded ZCS-PWM boost converters using power MOSFET are constructed to verify theoretical analysis.

  • PDF

Current Limiting and Interrupting Operation of Hybrid Self-Excited Type Superconducting DCCB

  • Choi, S.J.;Lim, S.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.4
    • /
    • pp.55-59
    • /
    • 2018
  • Currently, the development of industry makes needs larger electric supply. Providers must consider the efficiency about losses and reliability of the system. In this case, DC power system can save electrical energy; long-distance transmission line losses. Relevance to switch technology with a voltage-source converter (VSC) in AC-DC conversion system have been researched. But, protection device of DC-link against fault current is still needed to study much. VSC DC power system is vulnerable to DC-cable short-circuit and ground faults, because DC-link has a huge size of capacitor filter which releases extremely large current during DC faults. Furthermore, DC has a fatal flaw that current zero crossing is nonexistence. To interrupt the DC, several methods which make a zero crossing is used; parallel connecting self-excited series LC circuit with main switch, LC circuit with power electronic device called hybrid DC circuit breaker. Meanwhile, self-excited oscillator needs a huge size capacitor that produces big oscillation current which makes zero crossing. This capacitor has a quite effective on the price of DCCB. In this paper, hybrid self-excited type superconducting DCCB which are using AC circuit breaker system is studied by simulation tool PSCAD/EMTDC.

A Main Power Supply for Railway Vehicles using 3-level converters (3레벨 컨버터를 이용한 철도차량용 주 전력변환장치)

  • Rho Sung-Chan;Kim Yoon-Ho
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.646-652
    • /
    • 2003
  • AS a main Power Supply of the Railroad Vehicles, a three-Level ZVZCS DC/DC Converter is proposed in this paper. The proposed three-Level DC/DC Converter achieves zero voltage and zero current switching for the main switches. Its attribute is that the voltage across the switches is half the value of the input voltage. Also. using a diode and secondary side of the transformer, and simple auxiliary circuits it achieves zero current switching of the auxiliary switches. The principle operation and simulation results are included.

  • PDF

Zero-Current Switching LLC Resonant Post-Regulator for Independent Multi-Output (독립된 다중출력을 위한 영전류 스위칭 LLC 공진형 Post-Regulator)

  • Cho, Sang-Ho;Yoon, Jong-Kyu;Roh, Chung-Wook;Hong, Sung-Soo;Kim, Jong-Hae;Lee, Hyo-Bum;Han, Sang-Kyu
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.46-53
    • /
    • 2009
  • A new zero-current switching LLC resonant post-regulator for multi-output power system is proposed in this paper. A conventional LLC resonant converter employs extra non-isolated DC/DC converters to obtain tight-regulated multi-slave output voltages. Therefore, it has several serious problems such as a poor efficiency and high cost of production. The proposed post-regulator features low voltage and current stress across the output rectifier diodes and power switches. Moreover, the proposed post-regulator requires only one power switch instead of the bulky and expensive non-isolated DC/DC converter. Therefore, it features a simple structure and lower cost. Especially, since the proposed post-regulator can ensure the ZCS of all power switches, it has very desirable advantages such as more improved EMI characteristics and reduced switching losses. Finally, to confirm the operation, validity, and features of the proposed circuit, experimental results from a proposed zero-current LLC resonant post-regulator are presented.

An Integrated Single-Stage Zero Current Switched Quasi-Resonant Power Factor Correction Converter with Active Clamp Circuit (능동 클램프 회로를 적용한 단상 ZCS 공진형 역률개선 컨버터)

  • 이준영;문건우;고관본;윤명중
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.626-630
    • /
    • 1999
  • A new integrated single-stage zero current switched(ZCS) quasi-resonant converter (QRC) for the power factor correction(PFC) converter is introduced in this paper. The power factor correction can be achieved by the discontinuous conduction mode(DCM) operation of an input current. The proposed converter has the characteristics of the good power factor, low line current harmonics, and tight output regulation. Furthermore, the ringing effect due to the output capacitance of the main switch can be eliminated by use of active clamp circuit.

  • PDF

Design of the High Frequency Resonant Inverter for Corona Surface Processes

  • Choi, Chul-Yong;Lee, Dae-Sik
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.119-122
    • /
    • 2005
  • A algorithm for control and performance of a pulse-density-modulated (PDM) series-resonant voltage source inverter developed for corona-dischange precesses is presented. The PDM inverter produces either a square-wave ac-voltage state or a zero-voltage state at its ac terminals to control the average output voltage under constant dc voltage and operating frequency. Moreover it can achieve zero-current-switching (ZCS) and zero-voltage-switching (ZVS) in all the operating condition for a reduction of switching lost. Even though the corona discharge load with a strong nonlinear characteristics, new high frequency resonant inverter is shown the wide range power control from 5% to 100%.

  • PDF

A Two-Phase Separately Randomized Pulse Position PWM Technique with Double-Zero Vector Mode (2중 영 벡터 모드를 갖는 2상 개별 펄스 위치 변조기법)

  • Kim Jung-Geun;Oh Seung-Yeol;Jung Young-Gook;Lim Young-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.12
    • /
    • pp.739-750
    • /
    • 2004
  • In case while M(modulation index) is more than 0.7, the spectrum of motor voltage and current of a conventional two-phase SRP-PWM scheme are not reduced considerably. To solve the problems of a conventional two-phase SRP-PWM, this paper proposes a two-phase SRP-PWM(DZSRP-PWM) with double zero vector mode which zero vector is selected as V(111) in case of M >0.7, and zero vector is selected as V(000) if M < 0.7. For the validity of the proposed method, the PSIM simulations and experiments were achieved. And the simulation and experiment results show that the voltage and current harmonics all over the modulation index are spread to a wide band area.

A New Zero-Voltage-Switching Bridgeless PFC, Using an Active Clamp

  • Ramezani, Mehdi;Ghasedian, Ehsan;Madani, Seyed M.
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.723-730
    • /
    • 2012
  • This paper presents a new ZVS single phase bridgeless (Power Factor Correction) PFC, using an active clamp to achieve zero-voltage-switching for all main switches and diodes. Since the presented PFC uses a bridgeless rectifier, most of the time, only two semiconductor components are in the main current path, instead of three in conventional single-switch configurations. This property significantly reduces the conduction losses,. Moreover, zero voltage switching removes switching loss of all main switches and diodes. Also, auxiliary switch turns on zero current condition. The presented converter needs just a simple non-isolated gate drive circuitry to drive all switches. The eight stages of each switching period and the design considerations and a control strategy are explained. Finally, the converter operation is verified by simulation and experimental results.