• Title/Summary/Keyword: Current sensing accuracy

Search Result 80, Processing Time 0.025 seconds

Automotive High Side Switch Driver IC for Current Sensing Accuracy Improvement with Reverse Battery Protection

  • Park, Jaehyun;Park, Shihong
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1372-1381
    • /
    • 2017
  • This paper presents a high-side switch driver IC capable of improving the current sensing accuracy and providing reverse battery protection. Power semiconductor switches used to replace relay switches are encumbered by two disadvantages: they are prone to current sensing errors and they require additional external protection circuits for reverse battery protection. The proposed IC integrates a gate driver and current sensing blocks, thus compensating for these two disadvantages with a single IC. A p-sub-based 90-V $0.13-{\mu}m$ bipolar-CMOS-DMOS (BCD) process is used for the design and fabrication of the proposed IC. The current sensing accuracy (error ${\leq}{\pm}5%$ in the range of 0.1 A-6.5 A) and the reverse battery protection features of the proposed IC were experimentally tested and verified.

Integrated Current-Mode DC-DC Buck Converter with Low-Power Control Circuit

  • Jeong, Hye-Im;Lee, Chan-Soo;Kim, Nam-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.5
    • /
    • pp.235-241
    • /
    • 2013
  • A low power CMOS control circuit is applied in an integrated DC-DC buck converter. The integrated converter is composed of a feedback control circuit and power block with 0.35 ${\mu}m$ CMOS process. A current-sensing circuit is integrated with the sense-FET method in the control circuit. In the current-sensing circuit, a current-mirror is used for a voltage follower in order to reduce power consumption with a smaller chip-size. The N-channel MOS acts as a switching device in the current-sensing circuit where the sensing FET is in parallel with the power MOSFET. The amplifier and comparator are designed to obtain a high gain and a fast transient time. The converter offers well-controlled output and accurately sensed inductor current. Simulation work shows that the current-sensing circuit is operated with an accuracy of higher than 90% and the transient time of the error amplifier is controlled within $75{\mu}sec$. The sensing current is in the range of a few hundred ${\mu}A$ at a frequency of 0.6~2 MHz and an input voltage of 3~5 V. The output voltage is obtained as expected with the ripple ratio within 1%.

Comparative Study on Current Sensing Method of Multi-Phase Synchronous Buck Converter (다상 동기 벅 컨버터의 Current Sensing 방법의 비교 연구)

  • Kim, Jeong-Hoon;Cho, Kyung-Sig;Lim, Jeong-Gyu;Chung, Se-Kyo
    • Proceedings of the KIPE Conference
    • /
    • 2007.11a
    • /
    • pp.28-30
    • /
    • 2007
  • For the design of the voltage regulation module(VRM) having a high performance, current sensing is one of the most important functions. In this paper, three different methods for sensing the current in the multi-phase synchronous buck converter are analyzed considering the efficiency, accuracy and cost. The experiments are performed for the three current sensing methods to verify the theoretic analysis.

  • PDF

A Fast Response Integrated Current-Sensing Circuit for Peak-Current-Mode Buck Regulator

  • Ha, Jung-Woo;Park, Byeong-Ha;Kong, Bai-Sun;Chun, Jung-Hoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.6
    • /
    • pp.810-817
    • /
    • 2014
  • An on-chip current sensor with fast response time for the peak-current-mode buck regulator is proposed. The initial operating points of the peak current sensor are determined in advance by the valley current level, which is sensed by a valley current sensor. As a result, the proposed current sensor achieves a fast response time of less than 20 ns, and a sensing accuracy of over 90%. Applying the proposed current sensor, the peak-current-mode buck regulator for the mobile application is realized with an operating frequency of 2 MHz, an output voltage of 0.8 V, a maximum load current of 500 mA, and a peak efficiency of over 83%.

High-Accuracy Current Sensing Technique Based on Magnetic Sensors for Three-Phase Switchboards (삼상 배전반에서 자기센서 기반의 고정밀 전류 측정 기법)

  • Lee, Sungho;Kim, Taemin;Kim, Namsu;Ahn, Youngho;Lee, Sungchul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.12
    • /
    • pp.993-998
    • /
    • 2017
  • In this paper, a high-accuracy current sensing technique for three-phase current paths in an electrical switchboard is proposed. Conventional open-style current sensors using magnetic sensors show inaccurate sensing performance with more than 10% error due to undesired magnetic field interference from neighboring paths. To increase accuracy, large and expensive current transformers with large permeabilities have been used, which increased the cost and size. The proposed technique can improve the measured magnetic field by the calculation of magnetic interference effect from neighboring current paths. The relationship between neighboring magnetic fields and the desired magnetic field is theoretically analyzed in a general case. The proposed technique is verified using magnetic field simulations in a three-phase busbar environment.

High Performance Current-Mode DC-DC Boost Converter in BiCMOS Integrated Circuits

  • Lee, Chan-Soo;Kim, Eui-Jin;Gendensuren, Munkhsuld;Kim, Nam-Soo;Na, Kee-Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.6
    • /
    • pp.262-266
    • /
    • 2011
  • A simulation study of a current-mode direct current (DC)-DC boost converter is presented in this paper. This converter, with a fully-integrated power module, is implemented by using bipolar complementary metal-oxide semiconductor (BiCMOS) technology. The current-sensing circuit has an op-amp to achieve high accuracy. With the sense metal-oxide semiconductor field-effect transistor (MOSFET) in the current sensor, the sensed inductor current with the internal ramp signal can be used for feedback control. In addition, BiCMOS technology is applied to the converter, for accurate current sensing and low power consumption. The DC-DC converter is designed with a standard 0.35 ${\mu}m$ BiCMOS process. The off-chip inductor-capacitor (LC) filter is operated with an inductance of 1 mH and a capacitance of 12.5 nF. Simulation results show the high performance of the current-sensing circuit and the validity of the BiCMOS converter. The output voltage is found to be 4.1 V with a ripple ratio of 1.5% at the duty ratio of 0.3. The sensing current is measured to be within 1 mA and follows to fit the order of the aspect ratio, between sensing and power FET.

Short-circuit Protection Circuit Design for SiC MOSFET Using Current Sensing Circuit Based on Rogowski Coil (Rogowski Coil 기반의 전류 센싱 회로를 적용한 SiC MOSFET 단락 보호 회로 설계)

  • Lee, Ju-A;Byun, Jongeun;Ann, Sangjoon;Son, Won-Jin;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.3
    • /
    • pp.214-221
    • /
    • 2021
  • SiC MOSFETs require a faster and more reliable short-circuit protection circuit than conventional methods due to narrow short-circuit withstand times. Therefore, this research proposes a short-circuit protection circuit using a current-sensing circuit based on Rogowski coil. The method of designing the current-sensing circuit, which is a component of the proposed circuit, is presented first. The integrator and input/output filter that compose the current-sensing circuit are designed to have a wide bandwidth for accurately measuring short-circuit currents with high di/dt. The precision of the designed sensing circuit is verified on a double pulse test (DPT). In addition, the sensing accuracy according to the bandwidth of the filters and the number of turns of the Rogowski coil is analyzed. Next, the entire short-circuit protection circuit with the current-sensing circuit is designed in consideration of the fast short-circuit shutdown time. To verify the performance of this circuit, a short-circuit test is conducted for two cases of short-circuit conditions that can occur in the half-bridge structure. Finally, the short-circuit shutdown time is measured to confirm the suitability of the proposed protection circuit for the SiC MOSFET short-circuit protection.

A Design of 40V Power MOSFET for Low Power Electronic Appliances (저용량 가전용 40V급 Power MOSFET 소자의 설계 및 제작에 관한 연구)

  • Kang, Ey-Goo;Ann, Byoung-Sup;Nam, Tae-Jin;Kim, Bum-June;Lee, Young-Hon;Chung, Hun-Suk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.115-115
    • /
    • 2009
  • Current sensing in power semiconductors involves sensing of over-current in order to protect the device from harsh conditions. This technique is one of the most important functions in stabilizing power semiconductor device modules. The Power MOSFET is very efficient method with low power consumption, fast sensing speed and accuracy. In this paper, we have analyzed the characteristics of proposed sense FET and optimized its electrical characteristics to apply conventional 40 V power MOSFET by numerical and simulation analysis. The proposed sense FET has the n-drift doping concentration $1.5\times10^{14}\;cm^{-3}$, size of $600\;{\mu}m^2$ with $4.5\;{\Omega}$, and off-state leakage current below $50\;{\mu}A$. We offer the layout of the proposed Power MOSFET to process actually. The offerd design and optimization methods are meaningful, which the methods can be applied to the power devices having various breakdown voltages for protection.

  • PDF

A Design Method on Power Sense FET to Protect High Voltage Power Device (고전압 전력소자를 보호하기 위한 Sense FET 설계방법)

  • Kyoung, Sin-Su;Seo, Jun-Ho;Kim, Yo-Han;Lee, Jong-Seok;Kang, Ey-Goo;Sung, Man-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.1
    • /
    • pp.12-16
    • /
    • 2009
  • Current sensing in power semiconductors involves sensing of over-current in order to protect the device from harsh conditions. This technique is one of the most important functions in stabilizing power semiconductor device modules. The sense FET is very efficient method with low power consumption, fast sensing speed and accuracy. In this paper, we have analyzed the characteristics of proposed sense FET and optimized its electrical characteristics to apply conventional 450 V power MOSFET by numerical and simulation analysis. The proposed sense FET has the n-drift doping concentration $1.5{\times}10^{14}cm^{-3}$, size of $600{\um}m^2$ with $4.5\;{\Omega}$, and off-state leakage current below $50{\mu}A$. We offer the layout of the proposed sense FET to process actually. The offerd design and optimization methods are meaningful, which the methods can be applied to the power devices having various breakdown voltages for protection.

Building Change Detection Using Deep Learning for Remote Sensing Images

  • Wang, Chang;Han, Shijing;Zhang, Wen;Miao, Shufeng
    • Journal of Information Processing Systems
    • /
    • v.18 no.4
    • /
    • pp.587-598
    • /
    • 2022
  • To increase building change recognition accuracy, we present a deep learning-based building change detection using remote sensing images. In the proposed approach, by merging pixel-level and object-level information of multitemporal remote sensing images, we create the difference image (DI), and the frequency-domain significance technique is used to generate the DI saliency map. The fuzzy C-means clustering technique pre-classifies the coarse change detection map by defining the DI saliency map threshold. We then extract the neighborhood features of the unchanged pixels and the changed (buildings) from pixel-level and object-level feature images, which are then used as valid deep neural network (DNN) training samples. The trained DNNs are then utilized to identify changes in DI. The suggested strategy was evaluated and compared to current detection methods using two datasets. The results suggest that our proposed technique can detect more building change information and improve change detection accuracy.