• Title/Summary/Keyword: Current ripple

Search Result 901, Processing Time 0.032 seconds

Novel PWM Method with Low Ripple Current for Position Control Applications of BLDC Motors

  • Kim, Hag-Wone;Shin, Hee-Keun;Mok, Hyung-Soo;Lee, Yong-Kyun;Cho, Kwan-Yuhl
    • Journal of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.726-733
    • /
    • 2011
  • BLDC Motors are widely used in various speed control applications due to their ease of control and low cost. Generally, the unipolar PWM method is used for speed control applications. However, the unipolar PWM method has a current spike problem in the braking operation which can be a problem in speed reversal which generally happens in position control applications. However, the current spike problem can be solved by the conventional bipolar PWM method. Although the current spike problem can be solved, the conventional bipolar PWM method has the problem of a large current ripple. In this paper, a novel bipolar PWM method is proposed to solve this problem. The current ripple and the current spike problems are analyzed in this paper for the unipolar and bipolar PWM methods. At last, the merits of the proposed bipolar PWM method are proven by experiment.

Fault Detection for thyristors of Power Converter Module in Control Rod Control System (원자로 제어봉구동장치 제어시스템의 전력변환기 사이리스터 고장 검출)

  • Kim, Choon-Kyung;Cheon, Jong-Min;Lee, Jong-Moo;Jung, Soon-Hyun;Kwon, Soon-Man
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.559-562
    • /
    • 2003
  • In this paper, we introduce a new method detecting thyristor faults of the power converter module in Control Rod Control System. When we control the currents in each coil of Control Rod Drive Mechanism by using the current control method, the current value can follow the current reference despite the faults like the missing phase or the diode acting. Comparing the fault current values with the normal current values, the bad transient characteristics of the abnormal current can make the operations of control rods incorrect. In this case, the information from the current trends cannot be enough to detect the fault occurrence in thyristors. Instead of the coil currents, the state of thyristors can be watched by measuring the coil voltages. In the existing system of Westinghouse type, the ripple detector takes charge of this task. But this detector has some shortcomings in the point of time for fault detection, we come to devise a new fault detection method solving the problems which belong to the ripple detector.

  • PDF

A Simple and Size-effective design method of Battery Charger with Low Ripple Current (작은 전류리플을 갖는 저면적 배터리 충전회로 설계)

  • Chung, Jin-Il;Kwack, Kae-Dal
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.523-524
    • /
    • 2008
  • Proposed battery charger is a economic candidate because that is simple and small size. The circuit has linearly operational power stage. That use small size buffer with small driving current and large power MOS gate capacitance. The simulation result show that charging current is stable and has low ripple.

  • PDF

A Current Control Algorithm for Torque Ripple Reduction of Four-Switch Three-Phase Brushless DC Motors (4스위치 3상 BLDC 전동기의 토크 리플 저감을 위한 전류제어 알고리즘)

  • Park S.H.;Kim T.S.;Lee B.K.;Hyun D.S.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.472-476
    • /
    • 2003
  • In this paper, a new current control algorithm is proposed for four-switch three-phase brushless DC(BLU) motor drives, which are suitable for low cost applications. A current reference generation scheme is developed and Implemented to obtain high performance characteristics in the four-switch system, such as small torque ripple and fast dynamic speed/torque response. Moreover, the proposed scheme can successful1y eliminate the torque ripple during commutations, so that it can be expected that the four-switch system can be much more practically applied for the industrial application areas.

  • PDF

Analysis of Coupled Inductor for Interleaved PWM converter (인터리브드 PWM 컨버터에서의 Coupled Inductor 해석)

  • Shin, Dongsul;Cha, Honnyong;Lee, Jong-Pil;Yoo, Dong-Wook;Kim, Heeje
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.330-331
    • /
    • 2011
  • The interleaving method is usually used to reduce the ripple of output current of filter inductor in parallel operation of PWM DC/DC converter. Although the current ripple of filter inductor decreases, each current ripple of filter inductor is not decreased. In this study, the operation of interleaved buck converter with coupled inductor is analyzed in each operation mode. It is verified through experiment. The possibility of application to grid connected inverter with parallel operation is identified.

  • PDF

Characteristics Analysis of Double-layer AFPM Motor (Double-layer AFPM 전동기의 특성해석)

  • Kong, Jeong-Sik;Yoo, Hyune-O;Oh, Chul-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1999.11a
    • /
    • pp.24-27
    • /
    • 1999
  • This paper proposed a method to reduce torque ripple of double-layer axial flux permanent magnet motor. Torque is generated by interacting between current of stator winding and airgap flux. In the case of slotless axial flux permanent magnet motor, only commutation torque component is significant. Hence, cogging and reluctance torque will not be considered. For this propose, we were supplied differential phase current in each winding and shifted rotor magnet. According to shifted rotor magnet and flux and phase of current were shifted, phase of developed torque in each side is difference. As a result, we could reduce the total torque ripple in motor and obtain minimum torque ripple in the case of 7.5 degree shifting angle between two rotors.

  • PDF

Computations of Line Reactor Parameters and DC Bus Capacitance for Inverter (인버터의 선형 리액터 파라미터와 DC 버스 용량 계산)

  • Chen, Dezhi;Chai, Wenping;Kwon, Byung-il
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.968-969
    • /
    • 2015
  • This paper proposes a novel analysis method for calculating inverter DC bus capacitance and line reactor parameters. In the realization process, DC bus capacitance parameter, and ripple current, life of DC bus capacitor, interaction between DC bus capacitance can be calculated by using Newton-Raphson procedure. The design scheme of DC bus capacitor and line reactor, specific parameters such as capacitance, loss, ripple current, central average temperature, life, ripple current, loss, size, central temperature of the reactor were given. Simulation results show that this scheme can accurately calculate the DC bus capacitance and line reactor parameters. Compared with calculation result of references, cost and volume are half. The indicators meet the demand of practical engineering. It had affirmed precision of the analytical method and verified correctness and feasibility of this method.

  • PDF

CURRENT CONTROL ALGORITHM TO REDUCE TORQUE RIPPLE IN BRUSHLESS DC MOTORS

  • Lee, Kwang-Woon;Park, Jung-Bae;Yeo, Hyeong-Gee;Yoo, Ji-Yoon;Jo, Hyun-Min
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.380-385
    • /
    • 1998
  • This paper proposes a current control algorithm to reduce the torque ripple to commutation in unipolar PWM inverter-fed trapezoidal brushless dc motor drives. In this paper, we analyze the average voltage variation of the conducting phase due to commutation, and design a current controller to compensate for the average voltage variation. The proposed method predicts the duration of commutation to reduce the torque ripple due to over-compensation. Experimental results are presented that validate the proposed method.

  • PDF

2-Phase Bidirectional Non-Inverting Buck-Boost Converter using Coupled Inductor (결합 인덕터를 이용한 2상 양방향 비반전 벅-부스트 컨버터)

  • Chae, Jun-Young;Jeong, Seung-Yong;Cha, Hon-Nyong;Kim, Heung-Geun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.481-487
    • /
    • 2014
  • This study proposes a two-phase non-inverting buck-boost converter that uses a coupled inductor. The multi-phase converter has many advantages over single-phase counterparts, such as reduced output current ripple and conduction loss in switching devices and passive elements. Although the output current ripple of the multi-phase converter is reduced significantly because of the interleaved effect, the inductor current ripple is not reduced in multi-phase converters. One of the solutions to this problem is to use a coupled inductor. A 4 kW prototype converter is built and tested to verify the performance of the proposed converter.

Selection of Coupling Factor for Minimum Inductor Current Ripple in Multi-winding Coupled Inductor Used in Bidirectional DC-DC Converters

  • Kang, Taewon;Suh, Yongsug
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.879-891
    • /
    • 2018
  • A bidirectional dc-dc converter is used in battery energy storage systems owing to the growing requirements of a charging and discharging mode of battery. The magnetic coupling of output or input inductors in parallel-connected multi modules of a bidirectional dc-dc converter is often utilized to reduce the peak-to-peak ripple size of the inductor current. This study proposes a novel design guideline to achieve minimal ripple size of the inductor current under bidirectional power flow. The newly proposed design guideline of optimized coupling factor is applicable to the buck and boost operation modes of a bidirectional dc-dc converter. Therefore, the coupling factor value of the coupled inductor does not have to be optimized separately for buck and boost operation modes. This new observation is explained using the theoretical model of coupled inductor and confirmed through simulation and experimental test.