• Title/Summary/Keyword: Current power generation

Search Result 1,270, Processing Time 0.035 seconds

Coastal-physical cceanographic aspects in relation to the tidal current power generation in the Uldolmok (울돌목 조류발전의 연안물리적 관점에서의 고찰)

  • Yum Ki-Dai;Lee Kwang Soo;Park Jin Soon;Kang Sok Kuh
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.516-519
    • /
    • 2005
  • The pilot tidal current power plant is to be constructed at the Uldolmok between Chindo and Haenam, during next year. and extensive coastal engineering research works have been carried out. In this paper we describes some observation results of the tide and tidal current. as well as modeling work in order to investigate the tide and tidal current regime change in relation to the tidal current power plant (TCPP) construction. The special modeling skill in order to consider the turbine operation in the TCPP is developed and applied to the estimation for the flow regime change by the simple layout of the tidal current power plant.

  • PDF

Coastal-physical cceanographic aspects in relation to the tidal current power generation in the Uldolmok (울돌목 조류발전의 연안물리적 관점에서의 고찰)

  • Kang Sok Kuh;Yum Ki-Dai;Lee Kwang Soo;Park Jin Soon
    • New & Renewable Energy
    • /
    • v.1 no.2 s.2
    • /
    • pp.73-78
    • /
    • 2005
  • The pilot tidal current power plant is to be constructed at the Uldolmok between Chindo and Haenam, during next year, and extensive coastal engineering research works have been carried out. In this paper we describes some observation results of the tide and tidal current, as well as modeling work in order to investigate the tide and tidal current regime change In relation to the tidal current power plant [TCPP] construction. The special modeling skill in order to consider the turbine operation in the TCPP is developed and applied to the estimation for the flow regime change by the simple layout of the tidal current power plant.

  • PDF

Evaluation on Effect of Wind Power Generation System According to Transformer Winding Connection at Matlab&Simulink (MATLAB&SIMULINK에서 변압기 결선에 따른 풍력발전 시스템의 영향 평가)

  • An, Hae-Joon;Ro, Kyoung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.772-773
    • /
    • 2007
  • This study suggests a modeling of grid-connected wind power generation system that has induction generator, and aims to perform simulations for outputs by the variation of actual wind speed and for fault current of wind generation system by the transformer winding connection. This study is implemented by matlab&simulink. The simulation shall be performed by assuming single line to ground fault generated in the system. Generator power, rotor speed, terminal voltage, system voltage, and fault current shall be observed following the performance of simulation. The fault current change will be dealt through the simulation results for fault current of wind generation system following the grid-connected transformer winding connection and the simulation result by the transformer neutral ground method.

  • PDF

Design and Properties of a Self Generation Equipment using Current Transformer (변류기를 이용한 자가발전 장치의 설계와 특성)

  • Byun, W.B.;Kim, H.S.;Kim, J.R.;Lee, H.Y.;Lee, J.H.;Ji, M.K.;Lee, J.;Oh, Y.W.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.427-428
    • /
    • 2008
  • We have studied design and application about an self generation equipment for underground power transmission cable. The split CT(Current Transformer), which has the applicable underground power transmission cable, was manufactured through electromagnetic simulation of magnetic core. And manufactured the AC-DC converter that supplied stable DC power for PLC modem when current of power line has more than 150A. An self generation equipment using the CT and AC-DC converter get into operation the PLC modem consistently. As a result, the underground power transmission cable was showed the application possibility through the stable communication and network characteristics.

  • PDF

Investigation on the inductive and resistive fault current limiting HTS power cable

  • Lee, Sangyoon;Choi, Jongho;Kim, Dongmin;Kwon, Yonghyun;Kim, Seokho;Sim, Kideok;Cho, Jeonwook
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.2
    • /
    • pp.59-63
    • /
    • 2014
  • HTS power cable bypass the fault current through the former to protect superconducting tapes. On the other hand, the fault current limiting (FCL) power cable can be considered to mitigate the fault current using its increased inductance and resistance. Using the increased resistance of the cable is similar to the conventional resistive fault current limiter. In case of HTS power cable, the magnetic field of HTS power cable is mostly shielded by the induced current on the shield layer during normal operation. However, quench occurs at the shield layer and its current is kept below its critical current at the fault condition. Consequently, the magnetic field starts to spread out and it generates additional inductive impedance of the cable. The inductive impedance can be enhanced more by installing materials of high magnetic susceptibility around the HTS power cable. It is a concept of SFCL power cable. In this paper, a sample SFCL power cable is suggested and experimental results are presented to investigate the effect of iron cover on the impedance generation. The tests results are analyzed to verify the generation of the inductive and resistive impedance. The analysis results suggest the possible applications of the SFCL power cable to reduce the fault current in a real grid.

Grid-Connected Wind Power Generation System Using Cage-Type Induction Generators (농형 유도발전기를 이용한 계통 연계형 풍력발전 시스템)

  • Kim Hyeung-Gyun;Abo-Khalil A.;Lee Dong-Choon;Seok Jul-Ki
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.73-76
    • /
    • 2003
  • This paper proposes a maximum output power control of grid-connected wind power generation system using cage-type induction generators. For generator control, indirect vector control is used, where d-axis current controls the excitation level and q-axis current controls the generator speed. The generated power flows into the utility through the grid-side converter, by which the do link voltage is controlled to be constant and the ac current is controlled in sinusoid and. The generator speed is adjusted according to wind speed for extracting maximum power generation. Experimental results are shown to verify the validity of the proposed scheme.

  • PDF

Model-Based Loss Minimization Control for Induction Generators - in Wind Power Generation Systems (모델 기반의 풍력발전용 유도발전기의 최소 손실 제어)

  • Abo-Khalil, Ahmed G.;Lee, Dong-Choon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.7
    • /
    • pp.380-388
    • /
    • 2006
  • In this paper, a novel control algorithm to minimize the power loss of the induction generator for wind power generation system is presented. The proposed method is based on the flux level reduction, where the flux level is computed from the machine model for the optimum d-axis current of the generator. For the vector-controlled induction generator, the d-axis current controls the excitation level in order to minimize the generator loss while the q-axis current controls the generator torque, by which the speed of the induction generator is controlled according to the variation of the wind speed in order to produce the maximum output power. Wind turbine simulator has been implemented in laboratory to validate the theoretical development. The experimental results show that the loss minimization process is more effective at low wind speed and that the percent of power loss saving can approach to 25%. Experimental results are shown to verify the validity of the proposed scheme.

An Autonomous Optimal Coordination Scheme in a Protection System of a Power Distribution Network by using a Multi-Agent Concept

  • Hyun, Seung-Ho;Min, Byung-Woon;Jung, Kwang-Ho;Lee, Seung-Jae;Park, Myeon-Song;Kang, Sang-Hee
    • KIEE International Transactions on Power Engineering
    • /
    • v.2A no.3
    • /
    • pp.89-94
    • /
    • 2002
  • In this paper, a protection system using a Multi-Agent concept for power distribution networks is proposed. Every digital over current relay(OCR) is developed as an agent by adding its own intelligence, self-tuning and communication ability. The main advantage of the Multi-Agent concept is that a group of agents work together to achieve a global goal which is beyond the ability of each individual agent. In order to cope with frequent changes in the network operation condition and faults, an OCR agent, suggested in this paper, is able to detect a fault or a change in the network and find its optimal parameters for protection in an autonomous manner considering information of the whole network obtained by communication between other agents. Through this kind of coordination and information exchanges, not only a local but also a global protective scheme is completed. Simulations in a simple distribution network show the effectiveness of the suggested protection system.

Insolation Modeling Using by GIS (GIS기법을 이용한 일사량 모델링)

  • Kim, Byung-Woo;Kang, In-Joon;Kim, Sang-Suk;Kwak, Jae-Ha
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.359-361
    • /
    • 2010
  • This research is thing about location choice of solar power generation equipment to increase efficiency of solar power generation equipment. In the case of current solar power generation equipment, location of large scale solar power generation equipment facilities choice or, have localized in small scale equipment by individual. This research uses various climatic elements of small scale area for efficient location choice of solar power generation facilities and quantity of solar radiation did back-tracking.

  • PDF

Optimal Design of a MW Class SCSG for a Tidal Current Power Generation System

  • Go, Byeong-Soo;Sung, Hae-Jin;Park, Minwon;Yu, In-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2271-2276
    • /
    • 2015
  • A superconducting synchronous generator (SCSG) can be expected to decrease the size and weight compared to conventional tidal current generators. This paper proposes an optimal design of a 2 MW class SCSG for a tidal current power generation system. The proposed optimal design of the SCSG will reduce the length of the high-temperature superconducting wire as well as the weight and volume of the SCSG. The 3D finite element method is used to analyze the magnetic field distribution. The optimized 2 MW SCSG is compared with a 2 MW conventional generator. As the optimized SCSG is more compact and lighter than a conventional generator, it will be efficiently applied to practical tidal power systems.