• Title/Summary/Keyword: Current power generation

Search Result 1,270, Processing Time 0.031 seconds

Development of Uldolmok Tidal Current Energy (울돌목 조류에너지 개발 현황과 전망)

  • Lee Kwang-Soo;Yum Ki-Dai;Park Jin Soon;Kang Sok Kuh;Park Woo-Sun;Han Sang-Hun;Jung Gong-Il;Park Jung Woo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.512-515
    • /
    • 2005
  • The Korean peninsula has a number of coastal sites where the rhythmic rising and lowering of water surface due to tides result in strong tidal current. The kinetic energy of these currents can be efficiently exploited by using tidal current turbines. The pilot tidal current power plant is to be constructed at the Uldolmok between Chindo and Haenam. Extensive coastal engineer ing research works have been carried out. This paper describes some observation results of field campaign, design of the supporting structure of a pilot plant of 1,000kW and a future tidal current power plant and so on.

  • PDF

Tide and Tidal Current Characteristics and Tidal Current Power Generation in the Uldolmok Waterway (울돌목 조석-조류 특성 및 조류발전)

  • Kang, Sok-Kuh;Yum, Ki-Dai;Lee, Kwang-Soo;Park, Jin-Soon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.141-144
    • /
    • 2006
  • The tidal pi lot plant is being built in the Uldolmok waterway using Its strong tidal current with maximum current of about 12knots, which is revealed from the first direct observation using ADCP, on February, 2002. a serious of field observations (for example, ADCP observation was tarried out both at February 2002 and September, 2003), along with numerical modeling, have been carried out over the last several years, in order to understand the tidal dynamics and to examine the related variables according to the tidal current power plant (TCPP) operation.

  • PDF

Development of Leakage Current Reduction Method in 3-Level Photovoltaic PCS (3레벨 태양광 PCS에서의 누설전류 저감기법 개발)

  • Han, Seongeun;Jo, Jongmin;An, Hyunsung;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.1
    • /
    • pp.56-61
    • /
    • 2019
  • In this study, a reduction method of leakage current in a three-level photovoltaic power-conditioning system (PCS) is proposed and verified by simulation and experiment. Leakage current generation is analyzed through an equivalent model of the common mode voltage considering a significant parasitic capacitance existing between the photovoltaic array and ground. A leakage current reduction method using pulse-width modulation (PWM) method is also proposed, and a 10-kW three-level photovoltaic PCS simulation and experiment is performed with a $1{\mu}F$ parasitic capacitor based on 100 nF/kW. The proposed method using the PWM method is verified to reduce the leakage current by 73% compared with the conventional PWM method.

A Study on Energy Savings of a DC-based Variable Speed Power Generation System (직류기반 가변속 발전 시스템을 이용한 에너지 절감에 관한 연구)

  • Kido Park;Gilltae Roh;Kyunghwa Kim;Changjae Moon;Jongsu Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.666-671
    • /
    • 2023
  • As international environmental regulations on ship emissions are gradually strengthened, interest in electric propulsion and hybrid propulsion ships is increasing, and various solutions are being developed and applied to these ships, especially stabilization of the power system and system efficiency. The direct current distribution system is being applied as a way to increase the power. In addition, verification and testing of safety and performance of marine DC distribution systems is required. As a result of establishing a DC distribution test bed, verifying the performance of the DC distribution (variable speed power generation) system, and analyzing fuel consumption, this study applied a variable speed power generation system that is applied to DC power distribution for ships, and converted the power output from the generator into a rectifier. A system was developed to convert direct current power to connect to the system and monitor and control these devices. Through tests using this DC distribution system, the maximum voltage was 751.5V and the minimum voltage was 731.4V, and the voltage fluctuation rate was 2.7%, confirming that the voltage is stably supplied within 3%, and a variable speed power generation system was installed according to load fluctuations. When applied, it was confirmed through testing that fuel consumption could be reduced by more than 20% depending on the section compared to the existing constant speed power generation system.

A Study on Power Balance Control for Photovoltaic/Wind/Diesel Hybrid Generation (태양광.풍력.디젤 복합발전을 위한 전력균형제어에 관한 연구)

  • Jeong, S.H.;Cho, J.S.;Gho, J.S.;Choe, G.H.;Kim, E.S.;Lee, C.S.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1388-1390
    • /
    • 2002
  • Hybrid power system has a power balanced controller to equilibrate generation power with a load demand and it is composed of DC bus-type power systems. And all of power generators in hybrid power system can be equivalent to current-source characteristics. So this paper discusses power balance control for photovoltaic/wind/diesel hybrid power system. And through the results of simulation, the proposed scheme was verified.

  • PDF

Stable Generation of SRG Using Reference Current Limitation Strategy (지령전류 제한에 의한 SRG의 안정화 운전방식에 관한 연구)

  • Kang Yu-Jung;Park Sung-Jun;Ahn Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.20-23
    • /
    • 2002
  • A Switched Reluctance Generator attracts much attention because of high efficiency, simple cont-reliability, with traction drive. But the theories that have been adopted as SRG control methods up to the present are complicated. This paper proposes reference current limitation strategy for stable generation of SRM. The proposed method is verified by simulation and experiments.

  • PDF

Current to Voltage Converter for Low power OFDM modem (저전력 OFDM 모뎀 구현을 위한 IVC설계)

  • Kim, Seong-Kweon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.3 no.2
    • /
    • pp.86-92
    • /
    • 2008
  • Othogonal Frequency Division Multiplexing(OFDM) has been taken notice of 4th generation communication method because it has a merit of high data rate(HDR). To realize HDR communication, The OFDM a s high efficient Fast-Fourier-Transform (FFT)/Inversion FFT (IFFT) processor. Currently OFDM is realized by Digital Signal Processor(DSP) but it consumes a lot of Power. Therefore, current-mode FFT LSI has been proposed for compensation of this demerit. In this paper, we propose IVC for current-mode FFT LSI. From the simulation result, the output value of IVC is more than 3V when the value of FFT Block output is more than $7.35{\mu}A$. The output value of IVC is lower than 0.5V when the value of FFT Block output is lower than $0.97{\mu}A$. Designed IVC Low-power Current mode FFT LSI will contribute to the operation of current-mode FFT LSI and the development of next generation wireless communication systems.

  • PDF

Current Limiting Characteristics due to Application Location of a Superconducting Fault Current Limiter in a Simulated Power Distribution System (모의배전계통에 초전도한류기의 도입위치에 따른 전류제한 특성)

  • You, Il-Kyoung;Kim, Jin-Seok;Kim, Myoung-Hoo;Kim, Jae-Chul;Lim, Sung-Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.12
    • /
    • pp.90-95
    • /
    • 2009
  • The application of a large power transformer into a power distribution system was inevitable due to the increase of power demand and distributed generation. However, the decrease of the power transformer‘s impedance causes the short-circuit current of the power distribution system to increase and thus, the higher short-circuit current exceeds the cut-off ratings of the protective devices such as a circuit breaker. To solve these problems, several countermeasures have been proposed to protect the power system effectively from the higher fault current and the superconducting fault current limiter (SFCL) has been expected to be the promising countermeasure. However, the current limiting effect of SFCL including its bus voltage drop compensation depends on SFCL's application location in a distributed power system. In this paper, the current limiting and the bus-voltage drop compensating characteristics of the SFCL applied into a power distribution system were studied. In addition, the quench and the recovery characteristics of the SFCLs in each location of the power distribution system were compared each other.

Superconducting Magnet Power Supply System for the KSTAR 2nd Plasma Experiment and Operation

  • Choi, Jae-Hoon;Lee, Dong-Keun;Kim, Chang-Hwan;Jin, Jong-Kook;Han, Sang-Hee;Kong, Jong-Dae;Hong, Seong-Lok;Kim, Yang-Su;Kwon, Myeun;Ahn, Hyun-Sik;Jang, Gye-Yong;Yun, Min-Seong;Seong, Dae-Kyung;Shin, Hyun-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.326-330
    • /
    • 2013
  • The Korea Superconducting Tokamak Advanced Research (KSTAR) device is an advanced superconducting tokamak to establish scientific and technological bases for attractive fusion reactor. This device requires 3.5 Tesla of toroidal field (TF) for plasma confinement, and requires a strong poloidal flux swing to generate an inductive voltage to produce and sustain the tokamak plasma. KSTAR was originally designed to have 16 serially connected TF magnets for which the nominal current rating is 35.2 kA. KSTAR also has 7 pairs of poloidal field (PF) coils that are driven to 1 MA/sec for generation of the tokamak plasma according to the operation scenarios. The KSTAR Magnet Power Supply (MPS) was dedicated to the superconducting (SC) coil commissioning and $2^{nd}$ plasma experiment as a part of the system commissioning. This paper will describe key features of KSTAR MPS for the $2^{nd}$ plasma experiment, and will also report the engineering and commissioning results of the magnet power supplies.

Study on Bubble Generation and Size by Dimensionally Stable Anode in Electroflotation Process (전기부상공정에서 촉매성 산화물 전극에 따른 기포 발생량과 크기에 관한 연구)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.16 no.10
    • /
    • pp.1189-1195
    • /
    • 2007
  • Small gas bubbles are used in many environmental and industrial processes for solid-liquid separations or to facilitate heat and mass transfer between phases. This study examines some of the factors that affect the bubble volume and size processed in the EF (electroflotation) process. The effect of electrode material, NaCl dosage, current and electrode distance were studied. The results showed that the generated bubble volume with electrode material lay in: Pt/Ti ${\fallingdotseq}$ Ru/Ti ${\fallingdotseq}$ Ir/Ti > Ti electrode. The more NaCl dosage was high, the smaller bubble was generated due to the low electric power. Bubble generation was increased with increase of current. With the increase of NaCl dosage, bubble generation was increased at same electric power (16.2 W). Generated bubble volume was not affected by electrode distance. However, no clear trends in bubble size as a function of these parameters were evident.