• Title/Summary/Keyword: Current power generation

Search Result 1,270, Processing Time 0.034 seconds

Comparison of Generation Amount and Operating Time for Fixed-concentrated Type and Single Axis Trace Type of Photovoltaic (고정식 및 단축식 태양광 발전의 발전량과 운전시간의 비교)

  • Song, Hwan-Kee;Lee, Kyung-Sup;Choi, Yong-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.11
    • /
    • pp.743-747
    • /
    • 2015
  • In this paper, the power generation efficiency of the 4 [kW] fixed-concentrated type photovoltaic power generation system and that of the 4 [kW] single axis trace type photovoltaic power generation system were compared. For that purpose, the two types of photovoltaic power generation systems have been in operation for 1 year on an experimental basis. The amounts of power generated by the two types during the months of January through December and the characteristics of their operating times during the same period have been compared and analyzed. For the study, the type with higher efficiency was selected and the following conclusions have been reached. It was shown that the amount of power generated and the average operation times during the spring months of March through May are higher that those of the summer months of June through August when more sunlight is available. The reason for this phenomenon is thought to be that as the temperatures of the solar panel surface and the surrounding environment go up, the electric current decreases.

Smart Grid-The next Generation Electricity Grid with Power Flow Optimization and High Power Quality

  • Hu, Jiefeng;Zhu, Jianguo;Platt, Glenn
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.4
    • /
    • pp.425-433
    • /
    • 2012
  • As the demand for electric power increases rapidly and the amount of fossil fuels decreases year by year, making use of renewable resources seem very necessary. However, due to the discontinuous nature of renewable resources and the hierarchical topology of existing grids, power quality and grid stability will deteriorate as more and more distributed generations (DGs) are connected to the grids. It is a good idea to combine local utilization, local consumption, energy storage and DGs to form a grid-friendly micro grid, these micro grids can then assembled into an intelligent power system - the smart Grid. It can optimize power flow and integrate power generation and consumption effectively. Most importantly, the power quality and grid stability can be improved greatly. This paper depicts how the smart grid addresses the current issues of a power system. It also figures out the key technologies and expectations of the smart grid.

A Novel Photovoltaic Power Generation System including the Function of Shunt Active Filter

  • Park, Minwon;Seong, Nak-Gueon;Yu, In-Keun
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.2
    • /
    • pp.103-110
    • /
    • 2003
  • With significant development of power electronics technology, the proliferation of nonlinear loads such as static power converters has deteriorated power quality in power transmission and distribution systems. Notably, voltage harmonics resulting from current harmonics produced by the nonlinear loads have become a serious problem in many countries. Many photovoltaic power generation systems installed in building systems have harmonics that are the worst object for distribution systems as a utility interactive system, and it tends to spread out continuously. Proposed and implemented in this paper is a multi-function inverter control strategy that allows a shunt active filter function to the power inverter of the photovoltaic power generation system established on a building system. The effectiveness of the proposed system is demonstrated through the simulation of a hypothetical power system using PSCAD/EMTDC.

Operational Characteristic Analysis and Proposal of Senseless MPPT Control Scheme for PV Generation System (PV Output Senseless MPPT Control의 제안 및 운전특성 분석)

  • Choi, Jong-Ho;Lee, Dong-Han;Kim, Jong-Hyun;Kim, Jae-Ho;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1157-1158
    • /
    • 2006
  • The key of this study is the technical development to maximize electric energy production through PV generation system. Under a conventional MPPT control method, both input voltage and input current coming out from PV array had to be feed backed. Then, the system has complex structure and may fail to track Maximum Power Point of PV array when weather conditions changed urgently. A PV output senseless MPPT control for PV generation system is possible to solve the mentioned above. The best advantage is that the current flowing into load is the only one considerable factor. In case of a huge photovoltaic generation system, it can be operated much more safely than a conventional system. In this paper, a novel PV output senseless MPPT control for the PV generation system was proposed and applied to the manufactured system and the experimental results were shown. Authors are sure that it is the most useful method to maximize power from photovoltaic system with only a feedback of load current.

  • PDF

Optimizing the Electricity Price Revenue of Wind Power Generation Captures in the South Korean Electricity Market (남한 전력시장에서 풍력발전점유의 전력가격수익 최적화)

  • Eamon, Byrne;Kim, Hyun-Goo;Kang, Yong-Heack;Yun, Chang-Yeol
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.1
    • /
    • pp.63-73
    • /
    • 2016
  • How effectively a wind farm captures high market prices can greatly influence a wind farm's viability. This research identifies and creates an understanding of the effects that result in various capture prices (average revenue earned per unit of generation) that can be seen among different wind farms, in the current and future competitive SMP (System Marginal Price) market in South Korea. Through the use of a neural network to simulate changes in SMP caused by increased renewables, based on the Korea Institute of Energy Research's extensive wind resource database for South Korea, the variances in current and future capture prices are modelled and analyzed for both onshore and offshore wind power generation. Simulation results shows a spread in capture price of 5.5% for the year 2035 that depends on both a locations wind characteristics and the generations' correlation with other wind power generation. Wind characteristics include the generations' correlation with SMP price, diurnal profile shape, and capacity factor. The wind revenue cannibalization effect reduces the capture price obtained by wind power generation that is located close to a substantial amount of other wind power generation. In onshore locations wind characteristics can differ significantly/ Hence it is recommended that possible wind development sites have suitable diurnal profiles that effectively capture high SMP prices. Also, as increasing wind power capacity becomes installed in South Korea, it is recommended that wind power generation be located in regions far from the expected wind power generation 'hotspots' in the future. Hence, a suitable site along the east mountain ridges of South Korea is predicted to be extremely effective in attaining high SMP capture prices. Attention to these factors will increase the revenues obtained by wind power generation in a competitive electricity market.

Effect of Load Modeling on Low Frequency Current Ripple in Fuel Cell Generation Systems

  • Kim, Jong-Soo;Choe, Gyu-Yeong;Kang, Hyun-Soo;Lee, Byoung-Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.307-318
    • /
    • 2010
  • In this work, an accurate analysis of low frequency current ripple in residential fuel cell power generation systems is performed based on the proposed residential load model and its unique operation algorithm. Rather than using a constant dc voltage source, a proton exchange membrane fuel cell (PEMFC) model is implemented in this research so that a system-level analysis considering the fuel cell stack, power conditioning system (PCS), and the actual load is possible. Using the attained results, a comparative study regarding the discrepancies of low frequency current ripple between a simple resistor load and a realistic residential load is performed. The data indicate that the low frequency current ripple of the proposed residential load model is increased by more than a factor of two when compared to the low frequency current ripple of a simple resistor load under identical conditions. Theoretical analysis, simulation data, and experimental results are provided, along with a model of the load usage pattern of low frequency current ripples.

Islanding Detection Method for Inverter-Based Distributed Generation through Injection of Second Order Harmonic Current

  • Lee, Yoon-Seok;Yang, Won-Mo;Han, Byung-Moon
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1513-1522
    • /
    • 2018
  • This paper proposes a new islanding detection method for inverter-based distributed generators by continuously injecting a negligible amount of 2nd order harmonic current. The proposed method adopts a proportional resonant (PR) controller for the output current control of the inverter, and a PR filter to extract the 2nd order harmonic voltage at the point of common coupling (PCC). The islanding state can be detected by measuring the magnitude ratio of the 2nd order harmonic voltage to the fundamental voltage at the PCC by injecting a 2nd order harmonic current with a 0.8% magnitude. The proposed method provides accurate and fast detection under grid voltage unbalance and load unbalance. The operation of the proposed method has been verified through simulations and experiments with a 5kW hardware set-up, considering the islanding test circuit suggested in UL1741.

Application Necessity of the Active Filter Function to Photovoltaic Power Generation System installed in Building Systems (태양광발전시스템이 설치된 대전력 수용가의 Active Filter기능 적용의 필요성)

  • Seong, Nak-Gueon;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.277-280
    • /
    • 2002
  • With significant development of power electronics technology, the proliferation of nonlinear loads such as static power converters has deteriorated power quality in power transmission and distribution systems. Notably, voltage harmonics resulting from current harmonics produced by the nonlinear loads have become a serious problem in many countries. There are already a lot of PV power generation systems installed in building systems whose harmonics are the worst object for distribution systems as a utility interactive system and also it tends to spread out continuously. In this paper, the authors propose a multy-function inverter control strategy which puts a shunt active filter function to the power inverter of the PV power generation system established on a building system. The effectiveness of the proposed system is demonstrated through the simulation of hypothetical power system using PSCAD/EMTDC.

  • PDF

A New Load Flow Algorithm based on DAS with Considering Distributed Load (배전자동화 시스템에서 분포부하를 고려한 새로운 조류계산 알고리즘)

  • Yang, Xia;Choi, Myeon-Song;Lim, Il-Hyung;Lee, Seung-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.169-170
    • /
    • 2006
  • In this paper, A new algorithm for load flow calculation is proposed for radial distribution network. Feeder Remote Terminal Unit (FRTU) is utilized to collect data such as current magnitude and angle of power factor at each node. Proposed algorithm is based on the model of distributed load in distribution system. Load flow calculation is using four terminal constants method.

  • PDF

Load Flow Calculation and Short Circuit Faults Transients in Dispersed Generation Systems

  • Hosseini, Seyed Hossein;Shahnia, Farhad;Tizghadam, Saeed
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.800-804
    • /
    • 2005
  • Load flow and short circuit fault transients of a power distribution system with wind turbines as dispersed generation units is presented. Usage of renewable energies such as wind is already a small part of total installed power system in medium and low voltage networks. In this paper, a radial power distribution system with wind turbines is simulated using DIgSILENT PowerFactory software for their influence on load flow and short circuit fault transients. Short fault occurring in dispersed generation systems causes some problems for the system and costumers such as fault level increase or the problems of sudden fluctuations in the current, voltage, power and torque of the double fed induction machine utilized in the wind turbines which have been studied and investigated.

  • PDF