• Title/Summary/Keyword: Current power generation

Search Result 1,270, Processing Time 0.035 seconds

Frequency control method of ozonator power supply (오존발생기 구동장치의 주파수제어에 관한 연구)

  • 최규남
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.4
    • /
    • pp.887-893
    • /
    • 1999
  • The characteristics of ozone generator targeted for air or water sterilizing in the vessel utilizing the surface corona discharge between the electrodes on the ceramic substrate was investigated by using the frequency control method. The frequency control was achieved by controlling the degree of resonance between the secondary winding inductance of transformer and the electrode capacitance of ceramic discharge plate, and the range of control was found to be 5 times of discharge current. This frequency control method showed the efficiency of 28 mP ozone generation and the stability within 3.4 % when the input voltage was varied within 40% range. The frequency control method is regarded to be more efficient way of corona discharge control compared to the conventional on/off control or voltage control methods.

  • PDF

A Study of the Fabrication and Enhancement of Film Bulk Acoustic Wave Resonator using Two-Step Deposition Method of Piezoelectric Layer (압전층의 2단 증착법을 이용한 체적 음향파 박막형 공진기의 제작과 성능향상에 관한 연구)

  • Park Sung-Hyun;Chu Soon-Nam;Lee Neung-Heon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.7
    • /
    • pp.308-314
    • /
    • 2005
  • The 2 GHz film bulk acoustic wave resonator(FBAR), one of the most necessary device of the next generation mobile communication system, consisted of solidly mounted resonator(SMR) structure using Brags reflector, was researched in this paper The FBAR applied SiO$_{2}$ and W had large difference of the acoustic impedance to reflector Al to electrode and ZnO to piezoelectric layer. Specially, the FBAR applied the two-step deposition method to improve the c-axis orientation and increase reproducibility of the fabrication device had good performance. The electrical properties of plasma such as impedance, resistance, reactance, $V_{pp},\;I{pp}$, VSWR and phase difference of voltage and current, was analyzed and measured by RF sensor with the variable experiment process factors such as gas ratio, RF power and base vacuum level about concerning the thickness, c-axis orientation, adhesion and roughness. The FBAR device about the optimum condition resulted reflection loss(S$_{11}$) of -17 dB, resonance frequency of 1.93 GHz, electric-mechanical coefficient(k$_{eff}$) of 2.38 $\%$ and Qualify factor of 580. It was seen better qualify than the common dielectric filter at present and expected on business to the filter device of 2 GHz bandwidth with the MMIC technology.

Sound Analysis on <Masculine Feminine> (영화 <남성 여성>의 사운드 분석)

  • Lee, Sang In
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.5
    • /
    • pp.18-29
    • /
    • 2014
  • was somewhat of a turning point for Godard, allowing the Novelle Vague auteur to address for the first time the current political climate of the world in one of his film, and this film is a film of constant questioning and is, in the truest sense, a 'talking film'. In this paper, I attempt to analyse the sound of this film to interpret the complicated sound structure in . Godard was aware of the power of sound and experimented diverse methods such as 'direct sound', interviewing using the effect of on-sound and off-sound, multiple narration, reading a text aloud, sound effect and music which are controled and selected by himself in this film. , with its largely improvised dialogue, was a work of journalism which was recorded a generation of Marx Coca-Cola.

A Triboelectric Nanogenerator Design for the Utilization of Multi-Axial Mechanical Energies in Human Motions

  • Ryoo, Hee Jae;Lee, Chan Woo;Han, Jong Won;Kim, Wook;Choi, Dukhyun
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.312-322
    • /
    • 2020
  • As the use of mobile devices increase, there is public interest in the utilization of the human motion generated mechanical energy. The human motion generated mechanical energies vary depending on the body region, type of motion, etc., and an appropriate device has to be designed to utilize them effectively. In this work, a device based on the principles of triboelectric generation and inertia was assessed in order to utilize the multi-axial mechanical energies generated by human motions. To improve the output performance we confirm the changes in the output that vary with the structural design, the reasons for such changes, and variations in performance based on the parts of the human body. In addition, the level of electrical energy generated based on motion type was measured; a maximum voltage of 30 V and a current of 2 ㎂ were generated. Finally, the proposed device was utilized in LEDs used for lighting, thus demonstrating that multi-axial mechanical energies can be harvested effectively. Based on the results, we expect that the developed device can be utilized as a sensor to detect mechanical energies, to sense changes in motion, or as a generator for auxiliary power supply for mobile devices.

Study on the evaporation of high melting temperature metal by using the manufactured electron hem gun system (전자총 시스템 제작과 이를 이용한 고융점 금속 증발에 관한 연구)

  • 정의창;노시표;김철중
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2003
  • An axial electron beam gun system, which emits the electron beam power of 50 kW, has been manufactured. The electron beam gun consists of two parts. One is the electron beam generation part. including the filament, cathode, and anode. The maximum beam current is 2 A and the acceleration voltage is 25 kV. The other part includes the focusing-, deflection-, and scanning coils. The beam diameter and ham trajectory can be controlled by these coils. The characteristic of each part is measured ior the optimum condition of evaporation process. Moreover, Helmholtz coil is installed inside the vacuum chamber to adjust the incident angel of the beam to the melting surface for the maximum evaporation. We report on the evaporation rates for zirconium(Zr) and gadolinium(Gd) metals which have the high melting temperatures.

Decomposition of HFCs using Steam Plasma (스팀 플라즈마를 이용한 HFCs 분해특성)

  • Kim, Kwan-Tae;Kang, Hee Seok;Lee, Dae Hoon;Lee, Sung Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.1
    • /
    • pp.27-37
    • /
    • 2013
  • CFCs (Chlorofluorocarbons) and HCFCs (Hydrochlorofluorocarbons) that are chemically stable were proven to be a greenhouse gases that can destroy ozone layer. On the other hand, HFCs (Hydrofluorocarbons) was developed as an alternative refrigerant for them, but HFCs still have a relatively higher radiative forcing, resulting in a large Global Warming Potential (GWP) of 1,300. Current regulations prohibit production and use of these chemicals. In addition, obligatory removal of existing material is in progress. Methods for the decomposition of these material can be listed as thermal cracking, catalytic decomposition and plasma process. This study reports the development of low cost and high efficiency plasma scrubber. Stability of steam plasma generation and effect of plasma parameters such as frequency of power supply and reactor geometry have been investigated in the course of the development. Method for effective removal of by-product also has been investigated. In this study, elongated rotating arc was proven to be efficient in decomposition of HFCs above 99% and to be able to generate stable steam plasma with steam contents of about 20%.

Test Scheduling of NoC-Based SoCs Using Multiple Test Clocks

  • Ahn, Jin-Ho;Kang, Sung-Ho
    • ETRI Journal
    • /
    • v.28 no.4
    • /
    • pp.475-485
    • /
    • 2006
  • Network-on-chip (NoC) is an emerging design paradigm intended to cope with future systems-on-chips (SoCs) containing numerous built-in cores. Since NoCs have some outstanding features regarding design complexity, timing, scalability, power dissipation and so on, widespread interest in this novel paradigm is likely to grow. The test strategy is a significant factor in the practicality and feasibility of NoC-based SoCs. Among the existing test issues for NoC-based SoCs, test access mechanism architecture and test scheduling particularly dominate the overall test performance. In this paper, we propose an efficient NoC-based SoC test scheduling algorithm based on a rectangle packing approach used for current SoC tests. In order to adopt the rectangle packing solution, we designed specific methods and configurations for testing NoC-based SoCs, such as test packet routing, test pattern generation, and absorption. Furthermore, we extended and improved the proposed algorithm using multiple test clocks. Experimental results using some ITC'02 benchmark circuits show that the proposed algorithm can reduce the overall test time by up to 55%, and 20% on average compared with previous works. In addition, the computation time of the algorithm is less than one second in most cases. Consequently, we expect the proposed scheduling algorithm to be a promising and competitive method for testing NoC-based SoCs.

  • PDF

Experimental Study on Tip Clearance Effects for Performance Characteristics of Ducted Fan

  • Raza, Iliyas;Choi, Hyun-Min;Cho, Jin-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.395-398
    • /
    • 2009
  • Currently, a new generation of ducted fan UAVs (Unmanned Aerial Vehicles) is under development for a wide range of inspection, investigation and combat missions as well as for a variety of civil roles like traffic monitoring, meteorological studies, hazard mitigation etc. The current study presents extensive results obtained experimentally in order to investigate the tip clearance effects on performance characteristics of a ducted fan for small UAV systems. Three ducted fans having different tip clearance gap and with same rotor size were examined under three different yawed conditions of calibrated slanted hot-wire probe. Three dimensional velocity flow fields were measured from hub to tip at outlet of the ducted fan. The analysis of data were done by PLEAT (Phase locked Ensemble Averaging Technique) and three non-linear differential equations were solved simultaneously by using Newton -Rhapson numerical method. Flow field characteristics such as tip vortex and secondary flow were confirmed through axial, radial and tangential velocity contour plots. At the same time, the effects of tip clearance on axial thrust and input power were also investigated by using wind tunnel measurement system. For enhancing the performance of ducted fan, tip clearance level should be as small as possible.

  • PDF

Xenon in molten salt reactors: The effects of solubility, circulating particulate, ionization, and the sensitivity of the circulating void fraction

  • Price, Terry J.;Chvala, Ondrej;Taylor, Zack
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1131-1136
    • /
    • 2020
  • Xenon behaves differently in molten salt reactors (MSRs) compared to solid fuel reactors. This behavior needs exploring due to the large reactivity effect of the 135Xe isotope, given the current interest in MSR power plant development for commercial deployment. This paper focuses on select topics in xenon transport, reviews relevant past works, and proposes specific research questions to advance the state of the art in each of the focus areas. Specifically, the paper discusses the issue of xenon solubility in MSRs, the behavior of particulates circulating in MSR fuel salt and its influence on the xenon transport, the possibility of ionization of xenon atoms which changes its effective size and thus affects its mass transport, and finally the issue of circulating void fraction and how it is measured. This work presents specific recommendations for MSR designers to research the limits of Henry's law validity, circulating particulate scrubbers, validity of mass transport coefficients in high radiation fields, and the effects of pump speed on circulating void fraction.

Economic Evaluation of ESS and Natural Gas Generator for Expansion of New and Renewable Generation (신재생발전 확대적용을 위한 ESS와 천연가스발전기의 경제성 평가)

  • JOO, YONGJIN;SHIN, JUGON;SEO, DONGKYUN;PARK, SEIK
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.4
    • /
    • pp.363-369
    • /
    • 2018
  • This paper considers the alternative way to mitigate cost for REC instead of Photovoltaic (PV) panels with Energy Storage System (ESS). This study starts from an economic analysis of a 1 megawatt PV system without ESS. Several assumptions have been applied in consideration of the current domestic situation. Based on this result, the economic efficiency of PV with ESS improved. However, the reliance on government subsidies was very high. The alternative way to cover the fluctuation power from renewable energy was reviewed with economical and technical way. In case the natural gas engine applied to PV, the IRR and Levelized Cost of Electricity (LCOE) can be improved without ESS. And if small amount of additional REC, the IRR can be improved up to investment level.