Browse > Article
http://dx.doi.org/10.46670/JSST.2020.29.5.312

A Triboelectric Nanogenerator Design for the Utilization of Multi-Axial Mechanical Energies in Human Motions  

Ryoo, Hee Jae (Department of Mechanical Engineering, Kyung Hee University)
Lee, Chan Woo (Department of Mechanical Engineering, Kyung Hee University)
Han, Jong Won (Department of Mechanical Engineering, Kyung Hee University)
Kim, Wook (Department of Mechanical Engineering, Kyung Hee University)
Choi, Dukhyun (Department of Mechanical Engineering, Kyung Hee University)
Publication Information
Journal of Sensor Science and Technology / v.29, no.5, 2020 , pp. 312-322 More about this Journal
Abstract
As the use of mobile devices increase, there is public interest in the utilization of the human motion generated mechanical energy. The human motion generated mechanical energies vary depending on the body region, type of motion, etc., and an appropriate device has to be designed to utilize them effectively. In this work, a device based on the principles of triboelectric generation and inertia was assessed in order to utilize the multi-axial mechanical energies generated by human motions. To improve the output performance we confirm the changes in the output that vary with the structural design, the reasons for such changes, and variations in performance based on the parts of the human body. In addition, the level of electrical energy generated based on motion type was measured; a maximum voltage of 30 V and a current of 2 ㎂ were generated. Finally, the proposed device was utilized in LEDs used for lighting, thus demonstrating that multi-axial mechanical energies can be harvested effectively. Based on the results, we expect that the developed device can be utilized as a sensor to detect mechanical energies, to sense changes in motion, or as a generator for auxiliary power supply for mobile devices.
Keywords
Triboelectric nanogenerator; Human motion; Multi-axis; Mechanical sensor;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 F. Guido, A. Qualtieri, L. Algieri, E.D. Lemma, M. D. Vittorio, and M. T. Todaro, "AlN-based flexible piezoelectric skin for energy harvesting from human motion", Microelectron. Eng., Vol. 159, pp. 174-178, 2016.   DOI
2 M.-O. Kim, S. Pyo, Y. Oh, Y. Kang, K.-H. Cho, J. Choi, and J. Kim, "Flexible and multi-directional piezoelectric energy harvester for self-powered human motion sensor", Smart Mater. Struct., Vol. 27, No. 3, pp. 035001(1)-035001(9), 2018.   DOI
3 M. Lee, C.-Y. Chen, S. Wang, S. N. Cha, Y. J. Park, J. M. Kim, L.-J. Chou, and Z. L. Wang, "A hybrid piezoelectric structure for wearable nanogenerator", Adv. Mater., Vol. 24, No. 13, pp. 1759-1764, 2012.   DOI
4 B.-K. Park and J.-H. Paik, "Development and evaluation of broadband piezoelectric harvesters using a cantilever-type module", J. Sens. Sci. Technol., Vol. 29, No. 4, pp. 261-265, 2020.   DOI
5 P. Bai, G. Zhu, Z.-H. Lin, Q. Jing, J. Chen, G. Zhang, J. Ma, and Z. L. Wang, "Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions", ACS Nano, Vol. 7, No. 4, pp. 3713-3719, 2013.   DOI
6 S. Wang, Y. Xie, S. Niu, L. Lin, and Z. L. Wang, "Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non?contact modes", Adv. Mater., Vol. 26, No. 18, pp. 2818-2824, 2014.   DOI
7 Z. L. Wang, "Triboelectric nanogenerators as new energy technology and self-powered sensors - Principles, problems and perspectives", Faraday Discuss., Vol. 176, pp. 447-458, 2014.   DOI
8 Z. L. Wang, "Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors", ACS Nano, Vol. 7, No. 11, pp. 9533-9557, 2013.   DOI
9 C. Wu, A. C. Wang, W. Ding, H. Guo, and Z. L. Wang, "Triboelectric nanogenerator: A foundation of the energy for the new era", Adv. Energy Mater., Vol. 9, No. 1, pp. 1802906(1)-1802906(25), 2019.   DOI
10 S. Niu, S. Wang, L. Lin, Y. Liu, Y. S. Zhou, Y. Hu, and Z. L. Wang, "Theoretical study of contact-mode triboelectric nanogenerators as an effective power source", Energy Environ. Sci., Vol. 6, No. 12, pp. 3576-3583, 2019.   DOI
11 S. Niu, Y. Liu, S. Wang, L. Lin, Y. S. Zhou, Y. Hu, and Z. L. Wang, "Theory of sliding?mode triboelectric nanogenerators", Adv. Mater., Vol. 25, No. 43, pp. 6184-6193, 2013.   DOI
12 S. Niu, Y. Liu, S. Wang, L. Lin, Y. S. Zhou, Y. Hu, and Z. L. Wang, "Theoretical investigation and structural optimization of single?electrode triboelectric nanogenerators", Adv. Funct. Mater., Vol. 24, No. 22, pp. 3332-3340, 2014.   DOI
13 S. Niu, Y. Liu, X. Chen, S. Wang, Y. S. Zhou, L. Lin, Y. Xie and Z. L. Wang, "Theory of freestanding triboelectric-layerbased nanogenerators", Nano Energy, Vol. 12, pp. 760-774, 2015.   DOI
14 C. Cui, X. Wang, Z. Yi, B. Yang, X. Wang, X. Chen, J. Liu, and C. Yang, "Flexible single-electrode triboelectric nanogenerator and body moving sensor based on porous Na2- CO3/polydimethylsiloxane film", ACS Appl. Mater. Interfaces, Vol. 10, No. 4, pp. 3652-3659, 2018.   DOI
15 K. N. Kim, J. Chun, J. W. Kim, K. Y. Lee, J.-U. Park, S.- W. Kim, Z. L. Wang, and J. M. Baik, "Highly stretchable 2d fabrics for wearable triboelectric nanogenerator under harsh environments", ACS Nano, Vol. 9, No. 6, pp. 6394-6400, 2015.   DOI
16 X. Pu, M. Liu, X. Chen, J. Sun, C. Du, Y. Zhang, J. Zhai, W. Hu, and Z. L. Wang, "Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing", Nano Energy, Vol. 3, No. 5, pp. e1700015(1)-e1700015(10), 2017.
17 Y. Xie, S. Wang, S. Niu, L. Lin, Q. Jing, J. Yang, Z. Wu, and Z. L. Wang, "Grating?Structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency", Adv. Mater., Vol. 26, No. 38, pp. 6599-6607, 2014.   DOI
18 Z. Lin, B. Zhang, H. Guo, Z. Wu, H. Zou, J. Yang, and Z. L. Wang, "Super-robust and frequency-multiplied triboelectric nanogenerator for efficient harvesting water and wind energy", Nano Energy, Vol. 64, pp. 103908(1)-103908(7), 2019.
19 H. J. Hwang, Y. Jung, K. Choi, D. Kim, J. Park, and D. Choi, "Comb-structured triboelectric nanogenerators for multi-directional energy scavenging from human movements", Sci. Technol. Adv. Mater., Vol. 20, No. 1, pp. 725-732, 2019.   DOI
20 S. Lee, Y. Lee, D. Kim, Y. Yang, L. Lin, Z.-H. Lin, W. Hwang, and Z. L. Wang, "Triboelectric nanogenerator for harvesting pendulum oscillation energy", Nano Energy, Vol. 2, No. 6, pp. 1113-1120, 2013.   DOI
21 X. Chen, L. Gao, J. Chen, S. Lu, H. Zhou, T. Wang, A. Wang, Z. Zhang, S. Guo, X. Mu, Z. L. Wang, and Y. Yang, "A chaotic pendulum triboelectric-electromagnetic hybridized nanogenerator for wave energy scavenging and selfpowered wireless sensing system", Nano Energy, Vol. 69, pp. 104440(1)-104440(10), 2020.
22 A. C. Jimenez-Moreno, S. J. Charman, N. Nikolenko, M. Larweh, C. Turner, G. Gorman, H. Lochmuller, and M. Catt, "Analyzing walking speeds with ankle and arm worn accelerometers in a cohort with myotonic dystrophy", Disabil. Rehabil., Vol. 41, No. 24, pp. 2972-2978, 2019.   DOI
23 R. Cross, "Standing, walking, running, and jumping on a force plate", Am. J. Phys., Vol. 67, No. 4, pp. 304-309, 1999.   DOI