• Title/Summary/Keyword: Current harmonics

Search Result 897, Processing Time 0.023 seconds

Analysis of Reduction Effect of Three Harmonic Currents by Zigzag Wiring of Single Phase Transformer (단상 변압기 지그재그 결선에 의한 3고조파 전류 저감 효과 분석)

  • Kim, Jong-Gyeum;Kim, Ji-Myeong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.3
    • /
    • pp.99-104
    • /
    • 2017
  • The three-phase four-wire power distribution system can be used to supply power to single-phase and three-phase loads at the same time. There are linear loads and nonlinear loads as single-phase loads connected to each phase. The nonlinear load generates a harmonic current during the power energy conversion process. In particular, the single-phase nonlinear load has a higher proportion of generation of the third harmonic current than the harmonics of the other orders. In a three-phase four-wire system, the third harmonic current flows through the neutral wire to the power supply side, affecting the power supply side and the line. Furthermore, the magnitude of the current flowing in the neutral line can be higher than the current flowing in the individual phase. If the neutral current is higher than the phase current, the breaker may be blocked. Therefore, it is necessary to reduce the amount of current flowing in the neutral line by harmonics. There is a method of zigzag connecting a single phase transformer by a method of reducing 3 harmonic current. In this study, the method of reducing the magnitude of the three harmonic currents flowing through the zigzag wire by comparing the polarity and the negative polarity characteristics of the single phase transformer was compared through measurement and simulation.

Harmonic Reduction of Electric Propulsion System by Current Injection (전류주입에 의한 전기추진시스템의 고조파 저감)

  • Kim, Jong-Su;Han, Won-Hui;Seo, Dong-Hoan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.4
    • /
    • pp.360-364
    • /
    • 2012
  • AC to DC converter that consists of relatively simple diode rectifier devices has been widely used in the field of the electric propulsion system. Also, since this rectifier includes large harmonics in the input current, a variety of researches have been developed to reduce the harmonics. The proposed method of this paper is to reduce the harmonics included in the input current of rectifiers and propulsion motor by injecting the output current of diode rectifier into the input of them. In addition, the proposed method ensures electrical safety through the respective isolation of the injection current, the source, and the loads using the Wye-Delta insulating transformer applied in current injection device that is installed in the input circuit of rectifiers and propulsion motor. The proposed method is simulated by applying to the electric propulsion ship that is currently operating. We confirm the validity of the proposed method compared with conventional power conversion system.

A Study on the Fabrication and Simulation Analysis of AF-SMES System considering Internal Fault Condition (내부고장을 고려한 AF-SMES 시스템의 시뮬레이션 해석 및 제작에 관한 연구)

  • Kim, A-Rong;Kim, Jae-Ho;Kim, Hae-Jong;Kim, Seok-Ho;Seong, Ki-Chul;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1203-1204
    • /
    • 2006
  • Recently, utility network is getting more and more complicated and huge. In addition to, demands of power conversion devices which have non-linear switching devices are getting more and more increased. Consequently, according to the non-linear power semiconductor devices, current harmonics are unavoidable. Those current harmonics flow back to utility network and become one of the reasons which make the voltage distortion. On the other hands, voltage sag from sudden increasing loads is also one of the terrible problems inside of utility network. In order to compensate the current harmonics and voltage sag problem, AF(Active Filter) systems could be a good solution method and SMES(Superconducting Magnetic Energy Storage) system is a very good promising source due to the high response time of charge and discharge. Therefore, the combined system of AF and SMES is a wonderful device to compensate both harmonics current and voltage sag. However, unfortunately SMES needs a superconducting magnetic coil. Because of the introduction of superconducting magnetic coil, quench problem caused by unexpected reasons is always existed. In case of discharge operation, quench is a significantly harmful factor according as it decreases the energy capacity of SMES. Therefore, this paper presents a decision method of the specification of the AF-SMES system considering internal fault condition. Especially, authors analyzed the change of the original energy capacity of SMES regarding to the size of resistance caused by quench of superconducting magnetic coil. Finally, based on this simulation, authors manufactured actual Active Filter System using DSP.

  • PDF

A New Overlap Current Restraining Method for Current-source Rectifier

  • Qin, Haihong;Liu, Qing;Zhang, Ying;Zhang, Xin;Wang, Dan
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.615-626
    • /
    • 2018
  • To ensure a DC current path and avoid large voltage overshoot of the DC-link inductor, alternating PWM pulses in the current-source rectifier should be supplemented by overlap time, which generates an overlap current and causes input current distortion. In this study, the influence of overlap time is illustrated by comparing the AC-side current before and after overlap time is added. The overlap current distribution caused by overlap time is discussed under different modulation carriers, including triangle carrier, positive-going carrier, and negative-going carrier. The quantitative relationship between the extra harmonics of the AC-side current and overlap time is based on the Fourier analysis. Based on the commutation analysis, a new carrier modulation scheme that can restrain overlap current is proposed. A 3 kW prototype is established to verify the effectiveness of the influence of overlap time and the proposed restraining modulation scheme.

A Survey of the Harmonics Level on a Typical Household Loads by Field Measurements (현장 측정에 의한 일반 가정집 부하의 고조파 수준 조사)

  • Kim, Kyung-Chul;Oh, Kyung-Hoon;Choi, Hyoung-Bumb;Hong, Sa-Guen
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.5
    • /
    • pp.95-102
    • /
    • 2008
  • Typical household loads have nonlinear loads including a personal computer, video, refrigerator, microwave oven, TV, and audio set. These nonlinear loads generate harmonic currents and create distortions on the sinusoidal voltage of the power system. Harmonic field measurements have shown that the harmonic contents of a waveform varies with time. A cumulative probablistic approach is the most commonly used method to solve time varying harmonics. This paper provides in depth analysis on harmonics field measurement of the typical household loads for one year period and the survey is conducted with the objectives to identify the trends of harmonic distortion level present and indentify the future trends of metering in the presence of nonsinusoidal current and voltage waveforms in the system.

Series Active Power Filters to Compensate Harmonics and Reactive Power with the Direct Compensating Voltage Extraction Method in Three-Phase Four-Wire Systems

  • Kim, Jin-Sun;Kim, Young-Seok
    • Journal of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.691-699
    • /
    • 2009
  • This paper presents the analysis of series active power filter for reactive power compensation, load balancing, harmonic elimination, and neutral current eradication in three-phase four-wire power systems. Generally, the three-phase four-wire system is widely employed in distributing electric energy to several office building and manufacturing plants. In such systems, the third harmonic and its 3rd harmonics are termed as triple and zero sequence components that do not cancel each other in the system neutral. Consequently, the triple harmonics add together creating a primary source of excessive neutral current. Regarding this concern, this paper presents a new control algorithm for a series hybrid active system, whereas the control approach it adopts directly influence its compensation characteristics. Hence, the advantage of this control algorithm is the direct extraction of compensation voltage reference without phase transformations and multiplying harmonic current value by gain and the required rating of the series active filter is much smaller than that of a conventional shunt active power filter. In order to show the effectiveness of the proposed control algorithm, experiments have been carried out.

A Load Identification Method for ICPT System Utilizing Harmonics

  • Xia, Chen-Yang;Zhu, Wen-Ting;Ma, Nian;Jia, Ren-Hai;Yu, Qiang
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2178-2186
    • /
    • 2018
  • Online identification of load parameters is the premise of establishing a stable and highly-efficient ICPT (Inductive Coupled Power Transfer) system. However, compared with pure resistive load, precise identification of composite load, such as resistor-inductance load and resistance-capacitance load, is more difficult. This paper proposes a method for detecting the composite load parameters of ICPT system utilizing harmonics. In this system, the fundamental and harmonic wave channel are connected to the high frequency inverter jointly. The load parameter values can be obtained by setting the load equation based on the induced voltage of secondary-side network, the fundamental wave current, as well as the third harmonic current effective value received by the secondary-side current via Fourier decomposition. This method can achieve precise identification of all kinds of load types without interfering the normal energy transmission and it can not only increase the output power, but also obtain higher efficiency compared with the fundamental wave channel alone. The experimental results with the full-bridge LCCL-S type voltage-fed ICPT system have shown that this method is accurate and reliable.

Evaluating High-Degree-and-Order Gravitational Harmonics and its Application to the State Predictions of a Lunar Orbiting Satellite

  • Song, Young-Joo;Kim, Bang-Yeop
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.247-256
    • /
    • 2015
  • In this work, an efficient method with which to evaluate the high-degree-and-order gravitational harmonics of the non-sphericity of a central body is described and applied to state predictions of a lunar orbiter. Unlike the work of Song et al. (2010), which used a conventional computation method to process gravitational harmonic coefficients, the current work adapted a well-known recursion formula that directly uses fully normalized associated Legendre functions to compute the acceleration due to the non-sphericity of the moon. With the formulated algorithms, the states of a lunar orbiting satellite are predicted and its performance is validated in comparisons with solutions obtained from STK/Astrogator. The predicted differences in the orbital states between STK/Astrogator and the current work all remain at a position of less than 1 m with velocity accuracy levels of less than 1 mm/s, even with different orbital inclinations. The effectiveness of the current algorithm, in terms of both the computation time and the degree of accuracy degradation, is also shown in comparisons with results obtained from earlier work. It is expected that the proposed algorithm can be used as a foundation for the development of an operational flight dynamics subsystem for future lunar exploration missions by Korea. It can also be used to analyze missions which require very close operations to the moon.

Torque Ripple Reduction Algorithm of PM Synchronous Motor at High Speed Operation (영구자석 동기 전동기의 고속운전 시 토크리플 저감 알고리즘)

  • Kim, Jong-Hyun;Cho, Kwan-Yuhl;Kim, Hag-Wone
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.5
    • /
    • pp.429-436
    • /
    • 2015
  • Torque ripples generate mechanical vibration at low speed and acoustic noise at high speed. The back emf harmonics of a PM synchronous motor is one of the main sources of torque ripples. To reduce torque ripples resulting from back emf harmonics, dq-axis harmonic currents that reduce the torque ripples are generally compensated to the current controller. Harmonic current compensation is effective at low speed, but it is not applicable at high speed because of the limited bandwidth of the current controller. In this study, dq-axis harmonic voltage compensation that can reduce torque ripples at high speed is proposed. The dq-axis harmonic voltages are calculated from the motor speed and the dq-axis harmonic currents. The effectiveness of the proposed method in reducing torque ripple is verified by a simulation and experiments.

A Study On The Application Of Active Power Factor Correction Circuit In Inverter Airconditioner (인버터에어컨에 능동역률개선회로 적용에 관한 연구)

  • Kim, Tae-Duk;Bae, Young-Dawn;Park, Yoon-Ser
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.306-308
    • /
    • 1996
  • The demands of minimizing the reactive power and reducing the current harmonics are increasing nowdays. The inverter airconditioner needs high inductive power and it operates with wide load ranges. Conventionally, an huge LC passive filter is used in airconditioner to improve the power factor and to reduce current harmonics which doesn't give good results. In this paper, a design of active power factor correction(APFC)circuit for inverter airconditioner is described. To improve the P.F and reduce the current THD, average current controlled APFC is designed and tested. The problems of APFC implementation, their solution and testing results are described.

  • PDF