• 제목/요약/키워드: Current error compensation method

검색결과 102건 처리시간 0.03초

Harmonic Current Compensation based on Three-phase Three-level Shunt Active Filter using Fuzzy Logic Current Controller

  • Salim, Chennai;Benchouia, M.T.;Golea, A.
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권5호
    • /
    • pp.595-604
    • /
    • 2011
  • A three-phase three-level shunt active filter controlled by fuzzy logic current controller which can compensate current harmonics generated by nonlinear loads is presented. Three-level inverters and fuzzy controllers have been successfully employed in several power electronic applications these past years. To improve the conventional pwm controller performance, a new control scheme based on fuzzy current controller is adopted for three-level (NPC) shunt active filter. The scheme is designed to improve compensation capability of APF by adjusting the current error using a fuzzy rule. The inverter current reference signals required to compensate harmonic currents use the synchronous reference detection method. This technique is easy to implement and achieves good results. To maintain the dc voltage across capacitor constant and reduce inverter losses, a proportional integral voltage controller is used. The simulation of global system control and power circuits is performed using Matlab-Simulink and SimPowerSystem toolbox. The results obtained in transient and steady states under various operating conditions show the effectiveness of the proposed shunt active filter based on fuzzy current controller compared to the conventional scheme.

배전선로에서 전압측정치의 오차보정을 통한 정확한 구간부하 추정 방법 (Accurate Section Loading Estimation Method Based on Voltage Measurement Error Compensation in Distribution Systems)

  • 박재형;전철우;임성일
    • 조명전기설비학회논문지
    • /
    • 제30권2호
    • /
    • pp.43-48
    • /
    • 2016
  • Operational applications such as service restoration, voltage control and protection coordination are calculated based on the active and reactive power loading of the sections in the distribution networks. Loadings of the sections are estimated using the voltage and current measured from the automatic switches deployed along the primary feeders. But, due to the characteristics of the potential transformer attached to the switches, accuracy of the voltage magnitude is not acceptable to be used for section loading calculation. This paper proposes a new accurate section loading estimation method through voltage measurement error compensation by calculating voltage drop of the distribution line. In order to establish feasibility of the proposed method, various case studies based on Matlab simulation have been performed.

SVPWM 방식의 3상 인버터에 대한 간단한 데드타임 보상 알고리즘 (Dead Time Compensation Algorithm for the 3-Phase Inverter using SVPWM)

  • 김홍민;추영배;이동희
    • 전력전자학회논문지
    • /
    • 제16권6호
    • /
    • pp.610-617
    • /
    • 2011
  • 본 논문은 공간벡터펄스 변조법(SVPWM, Space Vector Pulse Width Modulation)을 사용하는 3상 인버터의 새로운 데드타임 직접 보상 방법을 제안한다. 제안된 데드타임 보상방식은 인버터에 인가되는 데드타임을 중간상 전류의 방향에 따라, 유효전압이 인가되는 유효전압벡터 인가시간에서 직접 보상하는 방식이다. 3상 인버터에서 각상에 인가되는 전압의 크기는 유효전압이 인가되는 시간에 의해 결정되고, 데드타임의 영향에 따라, 실제로 유효전압이 인가되는 스위칭 시간은 전류의 방향에 따라 손실이 발생하게 된다. 제안된 방식에서는 실제로 전류의 방향에 따라 손실이 발생하는 유효전압벡터의 인가시간에 직접적으로 손실 시간을 더하여 유효전압벡터의 인가시간을 계산하는 방식으로 별도의 전압오차를 보상하기 위한 제어기와 복잡한 d-q 변환을 필요로 하지 않는 장점이 있다. 제안된 방식은 3상 R-L 부하에 대하여 컴퓨터 모의해석과 실험을 통하여 제안된 방식의 데드타임 보상을 검증하였다.

Min Max 알고리즘과 Dead Time 보상기법에 의한 유도전동기의 성능 향상에 관한 연구 (A study to improve the Performance of induction motor using Min Max algorithm and dead time compensation method)

  • 김형구;양오
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 B
    • /
    • pp.976-978
    • /
    • 1999
  • Recently PWM invertor is broadly used for control of induction motor. The invertor is able to generate sin wave current from high speed switching power device such as IGBT. However the invertor is disturbed by dead time inevitably needed to prevent a short of the DC link voltage, and the dead time mainly causes distortions of the output current. In this Paper the dead time compensation method which corrects the voltage error from dead time, and Min Max algorithm enlarging the operating voltage of PWM were Proposed. This method can be implemented by software programming without any additional hardware circuit. The proposed algorithms were implemented by DSP(TMS320C31, 40MHz) and FPGA(QL2007, Quick Logic) described in VHDL. and applied to 3 phase induction motor(2.2 KW) to show the superior performance

  • PDF

응답성 향상을 위한 직류배전용 3상 AC/DC PWM 컨버터 출력전압 전향보상 기법 (Feedforward Compensation Method of Output Voltage with 3Phase AC/DC PWM Converter on DC Distribution System for Improved Response)

  • 최형준;이춘복;현승욱;홍석진;원충연
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2015년도 전력전자학술대회 논문집
    • /
    • pp.516-517
    • /
    • 2015
  • This paper proposes the feedforward compensation method of output voltage with 3phase AC/DC PWM converter on DC distribution system for improved response. AC/DC PWM converter on DC distribution is required power supply of high quality because of renewable energy sources and load links. In general, Feedforward compensation method of 3phase AC/DC PWM converter receives the sensor input to the output current, load power. Resulting, error of the sensing values and communication cause time delay. Therefore, Feedforward compensation method through only the output voltage is proposed in this paper. The feedforward compensation method through only the output voltage can be applied to the two-level AC/DC PWM converters, as well as multi-level converter or inverter.

  • PDF

온칩 시동회로를 갖는 CMOS DC-DC 벅 변환기 설계 (Design of monolithic DC-DC Buck converter with on chip soft-start circuit)

  • 박승찬;임동균;이상민;윤광섭
    • 한국통신학회논문지
    • /
    • 제34권7A호
    • /
    • pp.568-573
    • /
    • 2009
  • 본 논문에서 0.13um CMOS 공정으로 설계된 배터리 기반 휴대용 통신 시스템 구동용의 온칩 시동회로를 갖는 스텝다운 CMOS DC-DC 변환기를 제안하였다. 1MHz의 스위칭 주파수를 기반으로 설계된 벅 변환기에는 온칩 시동회로와 커패시터 멀티플라이어 기법을 이용한 보상회로를 포함시켰다. 칩 측정 결과 2.5V ${\sim}$3.3V의 입력 전압을 1.2V로 강압시키는데 최대 87.2%의 효율을 갖는다. 최대 부하 전류, 출력 전류 리플 및 전압 리플은 각각 500mA, 25mA, 24mV 이다.

온칩된 커패시터 채배기법 적용 보상회로를 갖는 DC to DC 벅 변환기 설계 (Design of a Step-Down DC-DC converter with On-chip Capacitor multiplyed Compensation circuit)

  • 박승찬;임동균;윤광섭
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2008년도 하계종합학술대회
    • /
    • pp.537-538
    • /
    • 2008
  • A step-down DC-DC converter with On-chip Compensation for battery-operated portable electronic devices which are designed in 0.18um CMOS standard process. In an effort to improve low load efficiency, this paper proposes the PFM (Pulse Frequency modulation) voltage mode 1MHz switching frequency step-down DC-DC converter with on-chip compensation. Capacitor multiplier method can minimize error amplifier compensation block size by 20%. It allows the compensation block of DC-DC converter be easily integrated on a chip and occupy less layout area. But capacitor multiplier operation reduces DC-DC converter efficiency. As a result, this converter shows maximum efficiency over 87% for the output voltage of 1.8V (input voltage : 3.3V), maximum load current 500mA, and 0.14% output ripple voltage. The total core chip area is $mm^2$.

  • PDF

A Neutral-Voltage-Compensated Sensorless Control of Brushless DC Motor

  • Won, Chang-Hee;Song, Joong-Ho;Ick Choy;Lim, Myo-Taeg
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제3B권1호
    • /
    • pp.59-64
    • /
    • 2003
  • This paper presents a new rotor position estimation method for brushless DC motors. The estimation error of the rotor position clearly provokes the phase shift angle misaligned between the phase current and the back-EMF waveforms, which causes torque ripple in brushless DC motor drives. Such an estimation error can be reduced with the help of the proposed neutral-voltage-based estimation method, which is structured as a closed loop observer. A neutral voltage appearing during the normal mode of the inverter operation is found to be an observable and control table measure, which can be used for estimating an exact rotor position. This neutral voltage is obtained from the DC-link current, the switching logic, and the motor speed values. The proposed algorithm, which can be easily implemented by using a single DC-link current and the motor terminal voltage sensors, is verified by simulation and experiment results.

이산화 오차를 고려한 ZCP 추정방법과 고속 BLDC 센서리스 구동에 관한 연구 (A Study of the ZCP Estimation Methods considering Discretization Error and High Speed BLDC Sensorless Drive)

  • 서은정;손정원;선우명호;이우택
    • 한국자동차공학회논문집
    • /
    • 제22권1호
    • /
    • pp.95-102
    • /
    • 2014
  • This paper presents zero crossing point(ZCP) estimation methods considering discretization error for a high speed brushless DC(BLDC) motor drive. The ZCP is estimated by detecting the change of back-EMF polarity for the BLDC sensorless drive, and the discretization error exist on the estimated ZCP. The discretization error of the ZCP is a cause of the delay of a commutation timing of current and increment of a current ripple factor. Besides a delay of a ZCP estimation brings on the limitation of a speed range for the BLDC sensorless drive. The compensation method based on the error analysis with probability theory for reducing the effects of the discretization error of the ZCP is proposed. Also a ZCP estimation method according to the Back-EMF patterns is proposed to widen the speed range for the BLDC sensorless drive. The proposed methods are verified by the experiment.

보정된 전류동역학에 기반한 영구자석 전동기의 참조모델 강인적응제어기 (An RMRAC Controller for Permanent Magnet Synchronous Motor Based On Modified Current Dynamics)

  • 김홍철;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제14권10호
    • /
    • pp.991-997
    • /
    • 2008
  • A new RMRAC scheme far the PMSM current regulation is proposed in a synchronous frame, which is completely free from the parameter's uncertainty. A current regulator of PMSM is the inner most loop of electromechanical driving systems and plays a foundation role in the control hierarchy. When the PMSM runs in high speed, the cross-coupling terms must be compensated precisely for large system BW. In the proposed RMRAC, the input signal is composed of a calculated voltage defined by MRAC law and an output of the disturbance compensator. The gains of feed forward and feedback controller are estimated by the proposed modified gradient method, where the system disturbances are assumed as filtered current regulation errors. After the compensation of the system disturbance from error information, the corresponding voltage is fed forward to control input to compensate for real disturbances. The proposed method robustly compensates the system disturbance and cross-coupling terms. It also shows a good realtime performance due to the simplicity of control structure. Through real experiments, the efficiency of the proposed method is verified.