• Title/Summary/Keyword: Current conduction

Search Result 918, Processing Time 0.037 seconds

The study on electrical conduction mechanism of plasma-polymerized methyl methacrylate (PPMMA) (플라즈마중합 PPMMA의 전기전도 기구에 관한 연구)

  • Park, Jae-Youn;Park, Kwang-Heun;Han, Sang-Ock;Lee, Deok-Chool
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.283-285
    • /
    • 1987
  • Transient conduction current (I - t characteristics) were measured in thin PPMMA (plasma-polymerized methyl methacrylate) films over the temperature range $60^{\circ}C-140^{\circ}C$ and the applied voltage range 3V - 30V. The current, which increased with temperature rise at constant applied voltage, showed less absorption current (current decay with time) at higher temperature region compared with those at lower temperature region. And the current, which increased with applied voltage rise at the constant temperature, showed less absorption current at higher voltage compared with those at lower voltage. The electric field current density characteristic curves were abtained from the conduction current values were after applying voltage for 30 minutes. And transient conduction currents were analyzed with high field conduction theories.

  • PDF

Optimal design of Current lead considering Natural convection (자연대류를 고려한 전류도입선의 최적설계)

  • Son, B.J.;Seol, S.Y.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.103-108
    • /
    • 2003
  • In this paper, the current lead for superconducting device is studied by numerical method. The current lead is cooled by surrounded $N_{2}$ gas by natural convection. The heat conduction equation for current lead and boundary layer equation for $N_{2}$ gas must be solved simultaneously. The boundary layer equation for $N_{2}$ gas is highly nonlinear for varied temperature of current lead. So the linearization method is adopted for simplicity. Numerical results using natural convection cooling are compared with the conventional cooling methods such as conduction cooling and vapor cooling methods. The main difference of natural convection cooing is the non-zero temperature gradient at the top of current lead for the minimum heat dissipation into superconducting devices. For the optimized conduction-cooling and vapor-cooling current leads, the temperature gradient at the top of current lead is zero. Also, the heat flow at the cold end is much smaller than conduction cooling case.

  • PDF

Discontinuous Conduction Mode Current Control using a Current Gain Feedforward Compensation for Boost Converter (전류게인 전향보상기법을 이용한 부스트 컨버터의 불연속전도 모드 전류제어)

  • Lee, Seung-Goo;Kim, Young-Roc;Cha, Han-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.11
    • /
    • pp.2049-2055
    • /
    • 2011
  • In this paper a new current control method is proposed for the discontinuous conduction mode of boost converter. The proposed method using a current gain feedforward compensation adjusts a measured inductor current value and then, calculated an average current precisely in the discontinuous conduction mode as well as continuous conduction mode. By applying the proposed method, the current measurement error is significantly reduced to 2% regardless of the operating points. The proposed method is analyzed and its performance is investigated in simulation. To verify the feasibility of the proposed scheme, a 10kW 3-phase interleaved boost converter was built and experimental results are matched to the simulation results.

Electrical Conduction Characteristics of Ultra High Voltage Cable for Prevention of Electrical Fires (전기 방재를 위한 초고압케이블의 전기 전도 특성)

  • Park, Hee-Doo;Park, Ha-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.216-217
    • /
    • 2007
  • In this paper we investigated the volume resistivity and AC conduction current according to the temperature and voltage. As a result, the volume resistivity comes to be small according to the measurement temperature and voltage. AC conduction current of the heat treatment specimen is increased because of the decrease of insulation.

  • PDF

Analysis of Conduction-Path Dependent Off-Current for Asymmetric Double Gate MOSFET (비대칭 이중게이트 MOSFET의 차단전류에 대한 전도중심 의존성 분석)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.3
    • /
    • pp.575-580
    • /
    • 2015
  • Asymmetric double gate(DG) MOSFET is a novel transistor to be able to reduce the short channel effects. This paper has analyzed a off current for conduction path of asymmetric DGMOSFET. The conduction path is a average distance from top gate the movement of carrier in channel happens, and a factor to change for oxide thickness of asymmetric DGMOSFET to be able to fabricate differently top and bottom gate oxide thickness, and influenced on off current for top gate voltage. As the conduction path is obtained and off current is calculated for top gate voltage, it is analyzed how conduction path influences on off current with parameters of oxide thickness and channel length. The analytical potential distribution of series form is derived from Poisson's equation to obtain off current. As a result, off current is greatly changed for conduction path, and we know threshold voltage and subthreshold swing are changed for this reasons.

Effects of Thermal-Carrier Heat Conduction upon the Carrier Transport and the Drain Current Characteristics of Submicron GaAs MESFETs

  • Jyegal, Jang
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 1997.11a
    • /
    • pp.451-462
    • /
    • 1997
  • A 2-dimensional numerical analysis is presented for thermal-electron heat conduction effects upon the electron transport and the drain current-voltage characteristics of submicron GaAs MESFETs, based on the use of a nonstationary hydrodynamic transport model. It is shown that for submicron GaAs MESFETs, electron heat conduction effects are significant on their internal electronic properties and also drain current-voltage characteristics. Due to electron heat conduction effects, the electron energy is greatly one-djmensionalized over the entire device region. Also, the drain current decreases continuously with increasing thermal conductivity in the saturation region of large drain voltages above 1 V. However, the opposite trend is observed in the linear region of small drain voltages below 1 V. Accordingly, for a large thermal conductivity, negative differential resistance drain current characteristics are observed with a pronounced peak of current at the drain voltage of 1 V. On the contrary, for zero thermal conductivity, a Gunn oscillation characteristic is observed at drain voltages above 2 V under a zero gate bias condition.

  • PDF

A Study on the Electrical Properties and Fabrication of Electret Element by Functional Ultra Thin Films -Electrical conduction in LB Ultra Thin Films of TCNQ- (기능성 초박막을 이용한 Electret 소자의 제작과 전기물성에 관한 연구-LB초박막 TCNQ의 전기전도 특성-)

  • 권영수;박만철;이원재;홍언식;강도열
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.5
    • /
    • pp.489-495
    • /
    • 1991
  • In this paper, we study the electrical conduction mechanism in Langmuir-Blodgett(LB) ultra thin films for which the LB device has a metal/LB films(TCNQ)/metal sandwich structure. Our experiments show that the current at the LB device does not depend on the temperature at below 0 C. This phenomena confirm that the electrical conduction current is a tunnel current inherent to ultra thin films. However, the current depends upon the temperature near the room temperature. This phenomena indicates the electeical conduction current is a Schottky current inherent to ultra thin films.

  • PDF

Current-Voltage Characteristics of Organic Light-Emitting Diodes with a Variation of Temperature (온도 변화에 따른 유기 전기 발광 소자의 전압-전류 특성)

  • Kim, Sang-Geol;Hong, Jin-Ung;Kim, Tae-Wan
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.7
    • /
    • pp.322-327
    • /
    • 2002
  • Temperature-dependent current-voltage characteristics of organic light-emitting diodes(OLEDs) were studied in a device structure of ITO/TPD/Alq$_3$/Al to understand conduction mechanism. The current-voltage characteristics were measured in the temperature range of 8K ~ 300K. We analyzed an electrical conduction mechanism of the OLEDS using space-charge-limited current(SCLC) and Fowler-Nordheim tunneling. In the temperature range above 150k, the conduction mechanism could be explained by space charge limited current from the inversely proportional temperature dependence of exponent m. The characteristic trap energy is found to be about 0.15ev. At low temperatures below 150k, the Fowler-Nordheim tunneling conduction mechanism is dominant. We have obtained a zero field barrier height to be about 0.6~0.8eV.

Thermal analysis of Current lead for Liquid/Conduction cooling on Superconducting system (액체/전도냉각형 초전도 시스템에서 전류도입선의 열적 해석)

  • 권기범;김형진;정은수;장호명
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.178-181
    • /
    • 2003
  • Intermediate cooling for current lead is used of thermal link in conduction cooling and cooled of itself in liquid cooling because it is put in liquid. If a existing formula for cooling load and optimal diameter-length of current lead is applied, it generate some more cooling load. Therefore, variation of thermal link height and holding depth in liquid is considered. This result is used of reducing cooling load of current lead occupying most of superconducting system load and applying liquid/conduction cooling systems.

  • PDF

Switching conduction characteristics of PI LB Film in MIM junctions (Polyimide(PI)LB막의 MIM구조 소자내에서의 switching전도특성)

  • ;;Mitsumasa Iwamoto
    • Electrical & Electronic Materials
    • /
    • v.8 no.2
    • /
    • pp.176-183
    • /
    • 1995
  • The present work is concerned with the switching conduction characteristics of PI LB films in metal insulator metal sandwiches. By applying various DC voltage bias to MIM junctions, conduction characteristics of junctions can be changed between the high-voltage low-current(off) condition, the low-voltage high-current (on) condition and the medium(mid) condition. Switching conduction characteristics can be also observed in MIM junctions employing some aromatic compounds as insulators. Switching conduction characteristics is assumed to be owing to the existence of aromatic rings, space charge in films, impurities on metal-insulator interface, and difference in work functions of base and top electrodes metal. To study the conduction process of on, off, and mid conductions, we measured I-V, d$^{2}$V/d I$^{2}$-V characteristics of junctions with several different top electrodes under various temperatures. Small conductance changes of junctions can be measured by observing the second derivative, d$^{2}$V/dI$^{2}$, of I-V curve. A dynamical technique is used to get the second derivatives. That is, a finite modulation of the current is applied to the junctions and the second harmonic of the voltage is detected.

  • PDF