• Title/Summary/Keyword: Current conditioning

Search Result 360, Processing Time 0.02 seconds

On the Reconstruction of Pinwise Flux Distribution Using Several Types of Boundary Conditions

  • Park, C. J.;Kim, Y. H.;N. Z. Cho
    • Nuclear Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.311-319
    • /
    • 1996
  • We reconstruct the assembly pinwise flux using several types of boundary conditions and confirm that the reconstructed fluxes are the same with the reference flux if the boundary condition is exact. We test EPRI-9R benchmark problem with four boundary conditions, such as Dirichlet boundary condition, Neumann boundary condition, homogeneous mixed boundary condition (albedo type), and inhomogeneous mixed boundary condition. We also test reconstruction of the pinwise flux from nodal values, specifically from the AFEN [1, 2] results. From the nodal flux distribution we obtain surface flux and surface current distributions, which can be used to construct various types of boundary conditions. The result show that the Neumann boundary condition cannot be used for iterative schemes because of its ill-conditioning problem and that the other three boundary conditions give similar accuracy. The Dirichlet boundary condition requires the shortest computing time. The inhomogeneous mixed boundary condition requires only slightly longer computing time than the Dirichlet boundary condition, so that it could also be an alternative. In contrast to the fixed-source type problem resulting from the Dirichlet, Neumann, inhomogeneous mixed boundary conditions, the homogeneous mixed boundary condition constitutes an eigenvalue problem and requires longest computing time among the three (Dirichlet, inhomogeneous mixed, homogeneous mixed) boundary condition problems.

  • PDF

Possibility of Spreading Infectious Diseases by Droplets Generated from Semiconductor Fabrication Process (반도체 FAB의 비말에 의한 감염병 전파 가능성 연구)

  • Oh, Kun-Hwan;Kim, Ki-Youn
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.32 no.2
    • /
    • pp.111-115
    • /
    • 2022
  • Objectives: The purpose of this study is to verify whether droplet-induced propagation, the main route of infectious diseases such as COVID-19, can occur in semiconductor FAB (Fabrication), based on research results on general droplet propagation. Methods: Through data surveys droplet propagation was modeled through simulation and experimental case analysis according to general (without mask) and mask-wearing conditions, and the risk of droplet propagation was inferred by reflecting semiconductor FAB operation conditions (air current, air conditioning system, humidity, filter conditions). Results: Based on the results investigated to predict the possibility of spreading infectious diseases in semiconductor FAB, the total amount of droplet propagation (concentration), propagation distance, and virus life in FAB were inferred by reflecting the management parameter of semiconductor FAB. Conclusions: The total amount(concentration) of droplet propagation in the semiconductor fab is most affected by the presence or absence of wearing a mask and the line air dilution rate has some influence. when worn it spreads within 0.35~1m, and since the humidity is constant the virus can survive in the air for up to 3 hours. as a result the semiconductor fab is judged to be and effective space to block virus propagation due to the special environmental condition of a clean room.

Comparison of Standards for healthcare Facilities and Environmental Investigation to Analyze Guidelines and Current Status of Healthcare Facilities (의료시설 관련 기준 비교와 환경 조사를 통한 의료시설 지침 및 현황 분석)

  • Jo, Yelim;Kim, Gihoon;Sung, Minki
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.28 no.4
    • /
    • pp.51-60
    • /
    • 2022
  • Purpose: This study aims to analyze and supplement the standards related to healthcare facilities, negative pressure isolation wards, and emergency treatment facilities. In addition, through environmental investigations, analysis of emergency remodeling cases centered on the structural and HVAC characteristics of healthcare facilities is conducted. Methods: Domestic and foreign standards related to healthcare facilities were analyzed. Field investigations and architectural drawing analysis of general and emergency treatment facilities were conducted. Results: Healthcare facilities have different space classifications and air conditioning methods depending on the site situation. Emergency treatment facilities are classified into cases where the HVAC system is remodeled and portable negative pressure unit is installed, and some facilities did not meet the standards for differential pressure and air change rate. Implications: When developing emergency remodeling technology, remodeling and safety evaluation guidelines, it is considered possible to propose clearer guidelines for emergency remodeling treatment facilities for infectious diseases in Korea by referring to the results of this study.

Effect of Cytarabine, Melphalan, and Total Body Irradiation as Conditioning for Autologous Stem Cell Transplantation for Patients with AML in First Remission (1차 관해된 급성 골수성 백혈병에서 자가 조혈모세포 이식을 위한 Cytarabine, Melphalan, 전신 방사선치료의 효과)

  • Kang Ki Mun;Choi Byung Ock;Chai Gyu Young;Kang Young Nam;Jang Hong Sek;Kim Hee Jae;Min Wo Sung;Kim Chun Choo;Choi Ihl Bohng
    • Radiation Oncology Journal
    • /
    • v.21 no.3
    • /
    • pp.192-198
    • /
    • 2003
  • Purpose: Current results of autologous stem cell transplantation (SCT) suggest that this procedure may prolong disease free survival In patients with acute myeloid leukemia (AML). Autologous SCT is increasingly used as treatment for AML in first remission. The aim of this study was to evaluate the outcome of autologous SCT for patients with AML in first remission treated by autologous SCT using cytarabine, melphalan and total body irradiation (TBI) as the conditioning regimen. Materials and Methods: Between January 1995 and December 1999, 29 patients with AML in first remission underwent autologous SCT. The median age of patients was 33 years (range, 16 to 47). The conditioning regimen consisted of cytarabine ($3.0\;gm/m^2$ for 3 days), melphalan ($100\;gm/m^2$ for 1 day) and TBI (total 1000 cGy in five fractions over 3 days). Results: The median follow up was 40 months with a range of 3 to 58 months. The 4-year cumulative probability of disease free survival was 69.0%, and median survival was 41.5 months. The 4-year relapse rate was 27.6%. The factor Influencing disease free survival and relapse rate was the French-American-British (FAB) classification ($M_3$ group vs. other groups; p=0.048, p=0.043). One patient died from treatment-related toxicity. Conclusion:: Although the small number of patients does not allow us to draw any firm conclusion, our results were encouraging and suggest that the association of cytarabine, melphalan and TBI as a conditioning regimen for autologous SCT for AML on first remission appears to be safe and effective.

A Study on the Energy-saving Variation by the Reduction of Insulation Boundary in Mixed-use Building (주상복합건물에서 단열 경계구역 축소에 따른 에너지 절감량 변화에 관한 연구)

  • Kim, Dae-Won;Kim, Young-Il;Kim, Sung-Min;Cho, Jin-Hwan;Chung, Kwang-Seop
    • Journal of Energy Engineering
    • /
    • v.21 no.2
    • /
    • pp.152-157
    • /
    • 2012
  • Due to the global warming and energy exhaustion, energy efficiency improvement of construction is recognized the stream of times. To improve the efficiency of the building, in order to energy saving, passive elements should be applied. Then the first step be supposed that applying the new standards about the insulation boundary. The current insulation boundary standards are not reasonable as well as does not divide the purposes. As a result, energy is being wasted and many civil complaints are also occurred. To improve these problems, applying the insulation boundary need to divide the heating and non-heating and subdivide the purpose of construction. In this study, accurate real heating and air conditioning areas are presented that work on the new insulation boundary of purposes and applicable standards. This proposed, by the real heating and air conditioning areas, insulation boundary of purposes, matching the reasonable capacity and load of equipment, by working on standards by optimal maintenance can be energy saving, to present guidelines that environment improvement of actual residents as well as energy saving be expected.

Analysis of Cooling Air Current and Efficiency of Air Conditioning in the Underground Subway Station with Screen-Door Opening and Closing (도시철도 역사 스크린 도어 개폐에 따른 냉방 기류 해석 및 효율 비교 분석)

  • Jang, Yong-Jun;Ryu, Ji-Min;Jung, Ho-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.5
    • /
    • pp.328-335
    • /
    • 2014
  • Numerical prediction methods were applied to investigate the turbulent air currents and air-conditioning efficiency in an underground subway station, and the results compared to experimental data. The Shin-gumho Station($8^{th}$ floor underground and 43.6m in depth) in Seoul was selected for the analysis. The entire station was covered for simulation and the ventilation mode was ordinary. The ventilation diffusers were modeled as 95 square shapes of $0.6m{\times}0.6m$ in the lobby and as 222 square shapes in the platform. Cooling air of $47,316m^3/h$ was supplied and the returned air of $33,980m^3/h$ is exhausted in the lobby and the cooling air of $33,968m^3/h$ is supplied and the returned air of $76,190m^3/h$ was exhausted in the platform which is the same as the experimental data. The cases of the screen-door-closed and open were respectively investigated. A total of 7.5million grids were generated and the whole domain divided into 22 blocks for MPI efficiency of calculation. Large eddy simulation (LES) was applied to solve the momentum and energy equation.

PR Controller Based Current Control Scheme for Single-Phase Inter-Connected PV Inverter (PR제어기를 이용한 단상 계통 연계형 태양광 인버터 설계)

  • Vu, Trung-Kien;Seong, Se-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3587-3593
    • /
    • 2009
  • Nowadays, the PV systems have been focused on the interconnection between the power source and the grid. The PV inverter, either single-phase or three-phase, can be considered as the core of the whole system because of an important role in the grid-interconnecting operation. An important issue in the inverter control is the load current regulation. In the literature, the Proportional+Integral (PI) controller, normally used in the current-controlled Voltage Source Inverter (VSI), cannot be a satisfactory controller for an ac system because of the steady-sate error and the poor disturbance rejection, especially in high-frequency range. By comparison with the PI controller, the Proportional+Resonant (PR) controller can introduce an infinite gain at the fundamental ac frequency; hence can achieve the zero steady-state error without requiring the complex transformation and the dq-coupling technique. In this paper, a PR controller is designed and adopted for replacing the PI controller. Based on the theoretical analyses, the PR controller based control strategy is implemented in a 32-bit fixed-point TMS320F2812 DSP and evaluated in a 3kW experimental prototype Photovoltaic (PV) power conditioning system (PCS). Simulation and experimental results are shown to verify the performance of implemented control scheme in PV PCS.

Comparison of PI and PR Controller Based Current Control Schemes for Single-Phase Grid-Connected PV Inverter (단상 계통 연계형 태양광 인버터에 사용되는 PI 와 PR 전류제어기의 비교 분석)

  • Vu, Trung-Kien;Seong, Se-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.8
    • /
    • pp.2968-2974
    • /
    • 2010
  • Nowadays, the PV systems have been focused on the grid connection between the power source and the grid. The PV inverter can be considered as the core of the whole system because of an important role in the grid-interfacing operation. An important issue in the inverter control is the load current regulation. In the literature, Proportional Integral (PI) controller, which is normally used in the current-controlled Voltage Source Inverter (VSI), cannot be a satisfactory controller for an AC system because of the steady-sate error and the poor disturbance rejection, especially in high-frequency range. Compared with conventional PI controller, Proportional Resonant (PR) controller can introduce an infinite gain at the fundamental frequency of the AC source; hence it can achieve the zero steady-state error without requiring the complex transformation and the de-coupling technique. Theoretical analyses of both PI and PR controller are presented and verified by simulation and experiment. Both controller are implemented in a 32-bit fixed-point TMS320F2812 DSP processor and evaluated on a 3kW experimental prototype PV Power Conditioning System (PCS). Simulation and experimental results are shown to verify the controller performances.

Management of the Nakdong-Jeongmaek based on the Characteristics of Cold Air - Focused on Busan, Ulsan, Pohang - (찬공기 특성을 고려한 낙동정맥 관리방안 연구 - 부산, 울산, 포항 인근을 대상으로 -)

  • Eum, Jeong-Hee;Son, Jeong-Min
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.44 no.5
    • /
    • pp.103-115
    • /
    • 2016
  • This study aims to analyze the properties of cold air production and its flow of Nakdong-Jeongmaek(mountain ranges), and to suggest management strategies for Nakdong-Jeongmaek in order to enhance the green air conditioning functions of Jeongmaek. For this purpose, three study sites including Gudeoksan Mountain and the vicinity in Busan, Goheonsan Mountain and the vicinity in Ulsan, and Unjusan Mountain and the vicinity in Pohang were selected. The results found that cold air flow and its height of the three study sites were analyzed based on topographic properties and land use. Management strategies for preserving and enhancing their temperature reduction functions were suggested. The cold air produced in the vicinity of Gudeoksan was not fully developed and spread because of the high-density development at the border of Jeongmaek. Since high pressures of development are expected at the border, high conservation policies are required. In the vicinity of Goheonsan, where the agricultural complex and industrial park are located, cold air flows well throughout the entire study site thanks to fully developed cold air in the wide, flat valley. Hence, plans to maintain the current cold air flow are required, and conservation plans to mitigate future developments are also needed in the flat valley. The cold air in Unjusan and the vicinity with its complex and narrow mountain valleys gradually develops into valley bottoms. In order to take advantage of the terrain, the valley near the cold air production areas are preserved. In particular, special plans are required to prevent damage to the cold air layer near Youngcheonho Lake, where the highest height of cold air was recorded due to the closed and lower terrain feature. This study could support the establishment of systematic management plans of Nakdong-Jeongmaek to preserve and enhance its green air conditioning functions.

Internet Monitoring of Wind-Photovoltaic Hybrid Generation System (풍력-태양광 복합발전 시스템의 인터넷 모니터링)

  • Yang, Si-Chang;Moon, Chae-Joo;Chang, Young-Hak;Soh, Soon-Yeol;Chung, Ji-Hyun;Kim, Eui-Sun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.4
    • /
    • pp.43-48
    • /
    • 2006
  • Recently, many researchers have shown great interest in wind-photovoltaic hybrid generation system which promotes electric power supply safely and progress of energy usage efficiently with complementary cooperation of a wind generation system and photovoltaic generation system. To use this hybrid generation system stably and effectively, we established a system which can acquire, analyse and save data and monitored remotely using internet. We constructed the signal conditioning circuit and used many kinds of converters to measure physical quantities such as wind velocity, intensity of illumination and temperature as well as many kinds of voltage and current for AC and DC. we acquired data from computer with data acquisition board, developed server program and client program which can download data that is monitored and saved in realtime at remote place. We analysed the measured data in relation to many conditions such as time and weather conditions.