• 제목/요약/키워드: Current and power quality control strategy

검색결과 42건 처리시간 0.023초

UPS용 병렬공진형 직류링크인버터를 위한 제어방식에 관한 연구 (Control Strategy of Resonant DC Link Inverter for UPS)

  • 백주원;유동욱;민병권;류승표
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 추계학술대회 논문집 학회본부
    • /
    • pp.159-161
    • /
    • 1994
  • A new control technique which generates high-quality sinusoidal output voltage from a single-phase resonant do link inverter suitable for the UPS systems is presented. The inverter output voltage control system has the PID controller with a minor loop of the filter inductor current and tile feedforward controller. The proposed control scheme also solves resonant voltage overshoot without any additional switch or passive component, resulting in pulses with uniform amplitude and high efficiency. Experimental results in the case of linear and nonlinear loads are presented to confirm the usefulness of the Proposed control algorithms.

  • PDF

An Efficient Control Strategy Based Multi Converter UPQC using with Fuzzy Logic Controller for Power Quality Problems

  • Paduchuri, Chandra Babu;Dash, Subhransu Sekhar;Subramani, C.;Kiran, S. Harish
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권1호
    • /
    • pp.379-387
    • /
    • 2015
  • A custom power device provides an integrated solution to the present problems that are faced by the utilities and power distribution. In this paper, a new controller is designed which is connected to a multiconverter unified power quality conditioner (MC-UPQC) for improving the power quality issues adopted modified synchronous reference frame (MSRF) theory with Fuzzy logic control (FLC) technique. This newly designed controller is connected to a source in order to compensate voltage and current in two feeders. The expanded concept of UPQC is multi converter-UPQC; this system has a two-series voltage source inverter and one shunt voltage source inverter connected back to back. This configuration will helps mitigate any type of voltage / current fluctuations and power factor correction in power distribution network to improve power quality issues. In the proposed system the power can be conveyed from one feeder to another in order to mitigate the voltage sag, swell, interruption and transient response of the system. The control strategies of multi converter- UPQC are designed based on the modified synchronous reference frame theory with fuzzy logic controller. The fast dynamics response of dc link capacitor is achieved with the help of Fuzzy logic controller. Different types of fault conditions are taken and simulated for the analysis and the results are compared with the conventional method. The relevant simulation and compensation performance analysis of the proposed multi converter-UPQC with fuzzy logic controller is performed.

Optimal Power Flow of DC-Grid Based on Improved PSO Algorithm

  • Liu, Xianzheng;Wang, Xingcheng;Wen, Jialiang
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권4호
    • /
    • pp.1586-1592
    • /
    • 2017
  • Voltage sourced converter (VSC) based direct-current (DC) grid has the ability to control power flow flexibly and securely, thus it has become one of the most valid approaches in aspect of large-scale renewable power generation, oceanic island power supply and new urban grid construction. To solve the optimal power flow (OPF) problem in DC grid, an adaptive particle swarm optimization (PSO) algorithm based on fuzzy control theory is proposed in this paper, and the optimal operation considering both power loss and voltage quality is realized. Firstly, the fuzzy membership curve is used to transform two objectives into one, the fitness value of latest step is introduced as input of fuzzy controller to adjust the controlling parameters of PSO dynamically. The proposed strategy was applied in solving the power flow issue in six terminals DC grid model, and corresponding results are presented to verify the effectiveness and feasibility of proposed algorithm.

Droop Control Scheme of a Three-phase Inverter for Grid Voltage Unbalance Compensation

  • Liu, Hongpeng;Zhou, Jiajie;Wang, Wei;Xu, Dianguo
    • Journal of Power Electronics
    • /
    • 제18권4호
    • /
    • pp.1245-1254
    • /
    • 2018
  • The stability of a grid-connected system (GCS) has become a critical issue with the increasing utilization of renewable energy sources. Under grid faults, however, a grid-connected inverter cannot work efficiently by using only the traditional droop control. In addition, the unbalance factor of voltage/current at the common coupling point (PCC) may increase significantly. To ensure the stable operation of a GCS under grid faults, the capability to compensate for grid imbalance should be integrated. To solve the aforementioned problem, an improved voltage-type grid-connected control strategy is proposed in this study. A negative sequence conductance compensation loop based on a positive sequence power droop control is added to maintain PCC voltage balance and reduce grid current imbalance, thereby meeting PCC power quality requirements. Moreover, a stable analysis is presented based on the small signal model. Simulation and experimental results verify the aforementioned expectations, and consequently, the effectiveness of the proposed control scheme.

고전압 무효전력 보상기를 사용한 대규모 풍력발전 설비의 전력 품질 보상 (Control of Power Quality Using a High Voltage STATCOM for the Integration of Large Scale Wind Power Plant)

  • 김지홍;송승호;정승기
    • 신재생에너지
    • /
    • 제8권4호
    • /
    • pp.13-20
    • /
    • 2012
  • This paper describes a transformerless static synchronous campensator (STATCOM) system based on cascade H-bridge multilevel inverter with star configuration. It is designed not only for the dynamic and continuous compensation of the reactive power but also for the improvement of power quality of existing wind power plant. Especially, when the induction generator of wind turbine is directly connected to the grid, reactive power are occurred by exiting current. so a reactive power compensation system based on the cascade H-bridge multilevel STATCOM is proposed because the output power quality and controllability of reactive power are required by grid code in many different countries. Using various The proposed reactive power control strategy using a STATCOM is compared with the conventional scheme using fixed-size of capacitor bank through various simulation results.

Power Quality Impacts of an Electric Arc Furnace and Its Compensation

  • Esfandiari Ahmad;Parniani Mostafa;Mokhtari Hossein
    • Journal of Electrical Engineering and Technology
    • /
    • 제1권2호
    • /
    • pp.153-160
    • /
    • 2006
  • This paper presents a new compensating system, which consists of a shunt active filter and passive components for mitigating voltage and current disturbances arising from an Electric Arc Furnace (EAF). A novel control strategy is presented for the shunt active filter. An extended method based on instantaneous power theory in a rotating reference frame is developed for extraction of compensating signals. Since voltages at the point of common coupling contain low frequency interharmonics, conventional methods cannot be used for dc voltage regulation. Therefore, a new method is introduced for this purpose. The passive components limit the fast variations of load currents and mitigate voltage notching at the Point of Common Coupling (PCC). A three-phase electric arc furnace model is used to show power quality improvement through reactive power and harmonic compensation by a shunt active filter using the proposed control method. The system performance is investigated by simulation, which shows improvement in power quality indices such as flicker severity index.

Unbalance Control Strategy of Boost Type Three-Phase to Single-Phase Matrix Converters Based on Lyapunov Function

  • Xu, Yu-xiang;Ge, Hong-juan;Guo, Hai
    • Journal of Power Electronics
    • /
    • 제19권1호
    • /
    • pp.89-98
    • /
    • 2019
  • This paper analyzes the input side performance of a conventional three-phase to single-phase matrix converter (3-1MC). It also presents the input-side waveform quality under this topology. The suppression of low-frequency input current harmonics is studied using the 3-1MC plus capacitance compensation unit. The constraint between the modulation function of the output and compensation sides is analyzed, and the relations among the voltage utilization ratio and the output compensation capacitance, filter capacitors and other system parameters are deduced. For a 3-1MC without large-capacity energy storage, the system performance is susceptible to input voltage imbalance. This paper decouples the inner current of the 3-1MC using a Lyapunov function in the input positive and negative sequence bi-coordinate axes. Meanwhile, the outer loop adopts a voltage-weighted synthesis of the output and compensation sides as a cascade of control objects. Experiments show that this strategy suppresses the low-frequency input current harmonics caused by input voltage imbalance, and ensures that the system maintains good static and dynamic performances under input-unbalanced conditions. At the same time, the parameter selection and debugging methods are simple.

A Novel Photovoltaic Power Generation System including the Function of Shunt Active Filter

  • Park, Minwon;Seong, Nak-Gueon;Yu, In-Keun
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제3B권2호
    • /
    • pp.103-110
    • /
    • 2003
  • With significant development of power electronics technology, the proliferation of nonlinear loads such as static power converters has deteriorated power quality in power transmission and distribution systems. Notably, voltage harmonics resulting from current harmonics produced by the nonlinear loads have become a serious problem in many countries. Many photovoltaic power generation systems installed in building systems have harmonics that are the worst object for distribution systems as a utility interactive system, and it tends to spread out continuously. Proposed and implemented in this paper is a multi-function inverter control strategy that allows a shunt active filter function to the power inverter of the photovoltaic power generation system established on a building system. The effectiveness of the proposed system is demonstrated through the simulation of a hypothetical power system using PSCAD/EMTDC.

Single-Stage Double-Buck Topologies with High Power Factor

  • Pires, Vitor Fernao;Silva, Jose Fernando
    • Journal of Power Electronics
    • /
    • 제11권5호
    • /
    • pp.655-661
    • /
    • 2011
  • This paper presents two topologies for single-stage single-phase double-buck type PFC converters, designed to operate at high power factor, near sinusoidal input currents and adjustable output voltage. Unlike the known buck type PFC topologies, in which the output voltage is always lower than the maximum input voltage, the proposed converters can operate at output voltages higher than the ac input peak voltage. A reduced number of switches on the main path of the current are another characteristic of the two proposed topologies. To shape the input line currents, a fast and robust controller based on a sliding mode approach is proposed. This active non-linear control strategy, applied to these converters allows high quality input currents. A Proportional Integral (PI) controller is adopted to regulate the output voltage of the converters. This external voltage controller modulates the amplitude of the sinusoidal input current references. The performances of the presented rectifiers are verified with experimental results.

PI Controlled Active Front End Super-Lift Converter with Ripple Free DC Link for Three Phase Induction Motor Drives

  • Elangovan, P.;Mohanty, Nalin Kant
    • Journal of Power Electronics
    • /
    • 제16권1호
    • /
    • pp.190-204
    • /
    • 2016
  • An active front end (AFE) is required for a three-phase induction motor (IM) fed by a voltage source inverter (VSI), because of the increasing need to derive quality current from the utility end without sacrificing the power factor (PF). This study investigates a proportional-plus-integral (PI) controller based AFE topology that uses a super-lift converter (SLC). The significance of the proposed SLC, which converts rectified AC supply to geometrically proceed ripple-free DC supply, is explained. Variations in several power quality parameters in the intended IM drive for 0% and 100% loading conditions are demonstrated. A simulation is conducted by using MATLAB/Simulink software, and a prototype is built with a field programmable gate array (FPGA) Spartan-6 processor. Simulation results are correlated with the experimental results obtained from a 0.5 HP IM drive prototype with speed feedback and a voltage/frequency (V/f) control strategy. The proposed AFE topology using SLC is suitable for three-phase IM drives, considering the supply end PF, the DC-link voltage and current, the total harmonic distortion (THD) in supply current, and the speed response of IM.