• 제목/요약/키워드: Current Control Structure

검색결과 862건 처리시간 0.028초

Simple LED driver with Constant Current Control

  • Park, Seong-Mi;Song, Sung Geun;Lee, Sang Hun
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제3권4호
    • /
    • pp.422-427
    • /
    • 2014
  • In this paper, simple LED driver is proposed. The proposed driver has simple construction having series capacitor, bridge rectifier, and adjustable regulator IC. Constant current control is possible with the use of TL431Z. The proposed in this paper, current is greater than the rating of the load, the current controller device measures the increased current in the circuit, and turned-on so that the current will be shared. Thus current control device makes the circuit more reliable, longevity as well as increase the luminous efficacy of the LED light. The simulation and experimental results are presented to show the validity of the proposed circuits.

A NEW CURRENT CONTROL FOR 3-LEVEL INVERTER

  • Lee, Byung-Song;Cho, Yun-Ok;Park, Hyun-June;Kim, Myung-yong;Byun, Yeun-Sub;Kim, Yun-Ho;Lee, Jae-Hak
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 Proceedings ICPE 98 1998 International Conference on Power Electronics
    • /
    • pp.357-361
    • /
    • 1998
  • A new current controlled PWM technique for a 3-level inverter has been proposed and described in the paper. The proposed current control has the simple structure without needing to calculate the switching angles of the voltage vectors. The output in the proposed inverter contains less harmonic content than that of a conventional current controlled PWM controller, since the current control can be applied to the 3-level inverter. In addition, the proposed current controlled PWM technique has lower switching frequency than that of a conventional current controlled PWM technique at the same current limit. The control method and the performance for a proposed 3-level inverter has been discussed and investigated by the computer simulation.

  • PDF

전류추정기에 의한 브러시리스 직류전동기의 상태변수 궤환제어기 설계 (Design of a State Feedback Controller with a Current Estimator in Brushless DC Motors)

  • 오태석;신윤수;김일환
    • 제어로봇시스템학회논문지
    • /
    • 제13권6호
    • /
    • pp.589-595
    • /
    • 2007
  • This paper presents a new method on controller design of brushless dc motors. In such drives the current ripples are generated by motor inductance in stator windings and the back EMF. To suppress the current ripples the current controller is generally used. To minimize the size and the cost of the drives it is desirable to control motors without the current controller and the current sensing circuits. To estimate the motor CUlTent it is modeled by a neural network that is contigured as an output-error dynamic system. The identified model is essentially a one step ahead prediction structure in which past inputs and outputs are used to calculate the current output. Using the model, a state feedback controller to compensate the effects of disturbance has been designed. The controller is implemented by a 16-bit microprocessor and the effectiveness of the proposed control method is verified through experiments.

Non-Isolated High Gain Bidirectional Modular DC-DC Converter with Unipolar and Bipolar Structure for DC Networks Interconnections

  • Sun, Lejia;Zhuo, Fang;Wang, Feng;Yi, Hao
    • Journal of Power Electronics
    • /
    • 제18권5호
    • /
    • pp.1357-1368
    • /
    • 2018
  • In this paper, a novel high gain bidirectional modular dc-dc converter (BMC) with unipolar and bipolar structures for dc network interconnections is proposed. When compared with traditional dc grid-connecting converters, the proposed converter can achieve a high voltage gain with a simple modular transformerless structure. A sub-modular structure for the BMC is proposed to eliminate the unbalanced current stress between the different power units (levels) in the BMC. This can realize current sharing and standardized production and assembling. In addition, phase-interval operation is introduced to the sub-modules to realize low voltage and current ripple in both sides of the converter. Furthermore, two types of bipolar topologies of the sub-modular BMC were proposed to extend its application in bipolar dc network connections. In addition, the control system was optimized for grid-connection applications by providing various control strategies. Finally, simulations of a 3-level unipolar sub-modular BMC and a 4-level bipolar sub-modular BMC were conducted, and a 1-kW experimental 3-level unipolar prototype was developed to verify the effectiveness of the proposed converter.

가변구조제어 이론을 이용한 유도 서보 전동기의 위치제어 (Position Control for Induction Servo Motors Using a Theory of Variable Structure Control)

  • 홍순일;홍정표
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권1호
    • /
    • pp.132-139
    • /
    • 2005
  • This paper describes the application of sliding mode control based on the variable structure control(VSC) concept for high-performance position control of an induction servo motor A design method based on external load parameters has been developed for the robust control of AC induction servo drive. Also, a slip frequency vector control with software current control technique has been adopted to achieve fast response of an induction motor drive The position control scheme is comprised of a variable structure controller and slip frequency vector control for inverter fed induction servo motor. Simulated results are given to verify the proposed design method by adoption of sliding mode and show robust control for a change of shaft inertia, viscous friction and torque disturbance.

Design and simulation of resonance based DC current sensor

  • Santhosh Kumar, B.V.M.P.;Suresh, K.;Varun Kumar, U.;Uma, G.;Umapathy, M.
    • Interaction and multiscale mechanics
    • /
    • 제3권3호
    • /
    • pp.257-266
    • /
    • 2010
  • A novel resonance based proximity DC current sensor is proposed. The sensor consists of a piezo sensed and actuated cantilever beam with a permanent magnet mounted at its free end. When the sensor is placed in proximity to a wire carrying DC current, resonant frequency of the beam changes with change in current. This change in resonant frequency is used to determine the current through the wire. The structure is simulated in micro and meso scale using COMSOL Multi physics software and the sensor is found to be linear with good sensitivity.

PV-SPE 시스템을 위한 새로운 MPPT 제어의 운전특성 분석에 관한 연구 (Analysis on Operational Characteristics of PV-SPE System by a Novel MPPT Control)

  • 최종호;이동한;김종현;김재호;박민원;유인근
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.121-124
    • /
    • 2006
  • In the newly developed control method, the current flowing into SPE cell is the only one considerable factor. So, the structure of control circuit becomes simple and the manufacturing cost of the control device decreases. In conventional power comparison MPPT control method however, a voltage and current coming out from PV cell should be feedbacked to chase maximum power point at every moment. Then, the structure of control circuit becomes so complex and the risk of control failure is much higher than the novel MPPT control method. Therefore, PV generation system by a novel MPPT control method is especially operated much more safely in case of a huge system, because the voltage coming out from PV-cell is not needed to be feedbacked. In this paper, the PV-SPR system was actually manufactured based on the simulation model of PSCAD/EMTDC program and the results tested were shown. Authors are sure that it is the most useful method to maximize power from PV to SPE with only a feedback of SPE input current.

  • PDF

Lyapunov-based Semi-active Control of Adaptive Base Isolation System employing Magnetorheological Elastomer base isolators

  • Chen, Xi;Li, Jianchun;Li, Yancheng;Gu, Xiaoyu
    • Earthquakes and Structures
    • /
    • 제11권6호
    • /
    • pp.1077-1099
    • /
    • 2016
  • One of the main shortcomings in the current passive base isolation system is lack of adaptability. The recent research and development of a novel adaptive seismic isolator based on magnetorheological elastomer (MRE) material has created an opportunity to add adaptability to base isolation systems for civil structures. The new MRE based base isolator is able to significantly alter its shear modulus or lateral stiffness with the applied magnetic field or electric current, which makes it a competitive candidate to develop an adaptive base isolation system. This paper aims at exploring suitable control algorithms for such adaptive base isolation system by developing a close-loop semi-active control system for a building structure equipped with MRE base isolators. The MRE base isolator is simulated by a numerical model derived from experimental characterization based on the Bouc-Wen Model, which is able to describe the force-displacement response of the device accurately. The parameters of Bouc-Wen Model such as the stiffness and the damping coefficients are described as functions of the applied current. The state-space model is built by analyzing the dynamic property of the structure embedded with MRE base isolators. A Lyapunov-based controller is designed to adaptively vary the current applied to MRE base isolator to suppress the quake-induced vibrations. The proposed control method is applied to a widely used benchmark base-isolated structure by numerical simulation. The performance of the adaptive base isolation system was evaluated through comparison with optimal passive base isolation system and a passive base isolation system with optimized base shear. It is concluded that the adaptive base isolation system with proposed Lyapunov-based semi-active control surpasses the performance of other two passive systems in protecting the civil structures under seismic events.

An Adaptive Fuzzy Current Controller with Neural Network For Field-Oriented Controller Induction Machine

  • Lee, Kyu-Chan;Lee, Hahk-Sung;Cho, Kyu-Bock;Kim, Sung-Woo
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 A
    • /
    • pp.227-230
    • /
    • 1993
  • Recently, the development of novel control methodology enables us to improve the performance of AC-machine drives by using pulse width modulation (PWM) technique. Usually, the dynamic characteristic of induction motor (IM) has been represented by the 5-th order nonlinear differential equation. This dynamics, however, can be reduced to 3-rd order dynamics by applying direct control of IM input current. This methodology concludes that it is much easier to control IM by means of the field-oriented methods employing the current controller. Therefore a precise current control is crucial to achieve a high control performance both in dynamic and steady state operations. This paper presents an adaptive fuzzy current controller with artificial neural network (ANN) for field-oriented controlled IM. This new control structure is able to adaptively minimize a current ripple while maintaining constant switching frequency. Especially the proposed controller employs neuro-computing philosophy as well as adaptive learning pattern recognizing principles with respect to variations of the system parameters. The proposed approach is applied to the IM drive system, and its performance is tested through various simulations. Simulation results show that the proposed system, compared among several known classical methods, has a superb performance.

  • PDF

게이트 전류 감지 구조를 이용한 향상된 레귤레이션 특성의 LDO regulator (LDO regulator with improved regulation characteristics using gate current sensing structure)

  • 정준모
    • 전기전자학회논문지
    • /
    • 제27권3호
    • /
    • pp.308-312
    • /
    • 2023
  • 게이트 전류 감지 구조는 LDO 레귤레이터가 오버슈트 또는 언더슈트 상황 발생 시 출력전압의 레귤레이션을 보다 효과적으로 제어하기 위해 제안되었다. 기존의 전형적인 LDO 레귤레이터는 부하전류가 변화할 때 레귤레이션 전압 변화가 발생한다. 하지만 게이트 전류 감지 구조를 이용하여 패스 트랜지스터에 있는 게이트 단자 전류를 공급/방전 함으로 인해 패스 트랜지스터의 동작 속도를 더욱 향상시킬 수 있다. 게이트 전류 감지 구조를 이용한 LDO 레귤레이터의 입력전압은 3.3 V ~ 4.5 V 이며 출력 전압은 3 V이고 부하 전류는 최대 250 mA의 값을 갖는다. 시뮬레이션 결과, 부하 전류가 250 mA 까지 변화할 때 약 9 mV의 전압 변화 값을 확인하였다.