• Title/Summary/Keyword: Current Compensation

Search Result 1,231, Processing Time 0.03 seconds

Compensation Algorithm for a Measurement Voltage Transformer (측정용 전압 변성기 오차 보상 알고리즘)

  • Kang, Yong-Cheol;Park, Jang-Min;Lee, Mi-Sun;Jang, Sung-Il;Kim, Yong-Gyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.5
    • /
    • pp.761-766
    • /
    • 2008
  • This paper describes a compensation algorithm for a measurement voltage transformer (VT) based on the hysteresis characteristics of the core. The error of the VT is caused by the voltages across the primary and secondary windings. The latter depends on the secondary current whilst the former depends on the primary current, i.e. the sum of the exciting current and the secondary current. The proposed algorithm calculates the voltages across the primary and secondary windings and add them to the measured secondary voltage for compensation. To do this, the primary and secondary currents should be estimated. The secondary current is obtained directly from the secondary voltage and used to calculate the voltage across the secondary winding. For the primary current, in this paper, the exciting current is decomposed into the two currents, i.e. the core-loss current and the magnetizing current. The core-loss current is obtained by dividing the primary induced voltage by the core-loss resistance. The magnetizing current is obtained by inserting the flux into the flux-magnetizing current curve. The calculated voltages across the primary and secondary windings are added to the measured secondary current for compensation. The proposed compensation algorithm improves the error of the VT significantly.

A Study on Reactive Current Compensation Using Thyristor Switch (Thyristor Switch를 사용한 무효전류 보상에 관한 연구)

  • 박민호;이복용
    • 전기의세계
    • /
    • v.28 no.12
    • /
    • pp.41-45
    • /
    • 1979
  • Improvement of power factor is achieved by reactive-current compensation, connecting power condenser to the circuit. This paper describes a method of reactive-current compensation, employing thyristor switching of capacitor banks without any breaker. This method reduces supply transients to the minimum by means of connecting condenser, because thyristor is triggered at zero point in condenser current. The reactive current detection and the experimental system to trigger thyristor at appropriate moment are given. IThe results show the fast reactive-current compensation on the condition of minimum transient.

  • PDF

Instantaneous Active/Reactive Power Compensation of Distribution Static Compensator using State Observer (배전용 정지형 보상기의 상태관측기를 이용한 순시 유효/무효전력 보상)

  • Kim, Hyeong-Su;Choi, Jong-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1377-1382
    • /
    • 2008
  • DSTATCOM(distribution static compensator) is one of the custom power devices, and protects a distribution line from unbalanced and harmonic current caused by non-linear and unbalanced loads. Researches about DSTATCOM are mainly divided two parts, one is the calculation of compensation current and the other part is the current control. Conventional researches use a LPF(low pass filter) to eliminate ripple component at the calculation of compensation current. But this method has a problem that LPF's characteristics restrict the compensation performance of instantaneous active and reactive power. This paper proposes a calculation of compensation current using state observer that can be a counterproposal of conventional methods using LPF. Improved performance of instantaneous active and reactive power compensation was shown by experiments.

A Square Wave Current Compensation of Current Source Induction Motor drives Using Active Power Filter (능동 전력 필터에 의한 유도모터 구동 전류형 인버터의 구형파 전류보상)

  • 정영국
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.133-136
    • /
    • 2000
  • Current Source Inverter(CSI) operated in square wave mode is more efficient than the PWM CSI because of increased cost greater complexity of control algorithm, and substantial switching losses EMI. But the square wave output current of CSI rich in low order harmonics produce motor torque ripples. Therefore in this paper describes the active power filters for square wave current compensation of current source induction motor. Also extended current synchronous detection(ECSD) as compensation algorithm is proposed. To confirm the validity o proposed system some simulation results are presented and discussed.

  • PDF

Design of a High-Precision Constant Current AC-DC Converter with Inductance Compensation

  • Chang, Changyuan;Xu, Yang;Bian, Bin;Chen, Yao;Hu, Junjie
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.840-848
    • /
    • 2016
  • A primary-side regulation AC-DC converter operating in the PFM (Pulse Frequency Modulation) mode with a high precision output current is designed, which applies a novel inductance compensation technique to improve the precision of the output current, which reduces the bad impact of the large tolerance of the transformer primary side inductance in the same batch. In this paper, the output current is regulated by the OSC charging current, which is controlled by a CC (constant current) controller. Meanwhile, for different primary inductors, the inductance compensation module adjusts the OSC charging current finely to improve the accuracy of the output current. The operation principle and design of the CC controller and the inductance compensation module are analyzed and illustrated herein. The control chip is implemented based on a TSMC 0.35μm 5V/40V BCD process, and a 12V/1.1A prototype has been built to verify the proposed control method. The deviation of the output current is within ±3% and the variation of the output current is less than 1% when the inductances of the primary windings vary by 10%.

A Study on Current Harmonics Reduction and Unbalanced Source Voltage Compensation Using Series Active Power Filter and Parallel Passive Filter (직렬 능동전력필터와 병렬 수동필터를 이용한 고조파 전류 저감 및 불평형 전원 전압 보상에 관한 연구)

  • Oh, Jae-Hoon;Ko, Su-Hyun;Han, Yoon-Seok;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.196-199
    • /
    • 2001
  • This paper deals with current harmonics and unbalanced source voltages compensation using combined filter system. Filter system consists of a series active filter and parallel passive filters. Passive filters were a traditional method to compensate current harmonics, so those were installed in power system widely. The active filter can be a substitution to improve filtering characteristics and complement drawbacks of the passive filter. The combined system of the active power filter and passive filter can has a better compensation performances and economical goods. The series type active power filter injects compensation voltage into power system by transformers. It's compensation principle is able to applicate for voltage compensation. A new control algorithm for series active filter to compensate current harmonics and unbalanced source voltages is proposed. In the proposed algorithm, a compensation voltage for harmonic reduction is calculated directly by instantaneous reactive power theory, and a compensation voltage for unbalanced source voltage is calculated in based on a synchronous reference frame. By experiments, we show validity of proposed compensation method.

  • PDF

Compensation Strategy to Eliminate the Effect of Current Measurement Offsets in Grid-Connected Inverters

  • Lee, Chang-Hee;Choi, Jong-Woo
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.383-391
    • /
    • 2014
  • For the digital control of systems such as grid-connected inverters, measuring inverter output currents accurately is essential. However, current measurement offsets are inevitably generated by current measurement paths and cause DC current components in real inverter output currents. Real inverter output currents with DC components cause the DC-link capacitor voltage to oscillate at the frequency of a utility voltage. For these reasons, current measurement offsets deteriorate the overall system performance. A compensation strategy to eliminate the effect of current measurement offsets in grid-connected inverters is proposed in this study. The validity of the proposed compensation strategy is verified through simulations and experiments. Results show that the proposed compensation strategy improves the performance of grid-connected inverters.

Research on Protection Method for Ground Electrode of DC Systems from Corrosion (직류 접지극의 전식보호 방법 연구)

  • Jeong, Woo-Yong;Kim, Hyosung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.2
    • /
    • pp.90-95
    • /
    • 2021
  • In contrast to AC grounding systems, the ground electrode in DC systems continuously maintains positive or negative polarity. Ground electrodes with (+) polarity proceeds by oxidation reaction. Thus, the DC current should flow opposite to the polarity of the leakage current flowing through the (+) ground electrode by using a compensation electrode, and the current flowing through the (+) ground electrode can be 0A. However, according to protecting the (+) ground electrode, the compensation electrode corrodes and gets damaged. Thus, the (+) ground electrode must be protected from corrosion, and the service life of the compensation electrode must be extended. As an alternative, the average value of the current flowing through the compensation electrode should be equal with the value of the leakage current flowing through the (+) ground electrode by using the square waveform. Throughout the experiment, the degree of corrosion on the compensation electrode is analyzed by the frequency of the compensation electrode for a certain time. In the experiment, the frequencies of the square waveform are considered for 0.1, 1, 10, 20, 50, 100 Hz, and 1 kHz. Through experiments and analysis, the optimal frequency for reducing the electrolytic damage of the (+) electrode and compensation electrode in an LVDC grounding environment is determined.

A novel grey TMD control for structures subjected to earthquakes

  • Z.Y., Chen;Ruei-Yuan, Wang;Yahui, Meng;Timothy, Chen
    • Earthquakes and Structures
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • A model for calculating structure interacted mechanics is proposed. A structural interaction model and controller design based on tuned mass damping (TMD) was developed to control the induced vibration. A key point is to introduce a new analytical model to evaluate the properties of the TMD that recognizes the motion-dependent nonlinear response observed in the simulations. Aiming at the problem of increased current harmonics and low efficiency of permanent magnet synchronous motors for electric vehicles due to dead time effect, a dead time compensation method based on neural network filter and current polarity detection is proposed. Firstly, the DC components and the higher harmonic components of the motor currents are obtained by virtue of what the neural network filters and the extracted harmonic currents are adjusted to the required compensation voltages by virtue of what the neural network filters. Then, the extracted DC components are used for current polarity dead time compensation control to avert the false compensation when currents approach zero. The neural network filter method extracts the required compensation voltages from the speed component and the current polarity detection compensation method obtains the required compensation voltages by discriminating the current polarity. The combination of the two methods can more precisely compensate the dead time effect of the control system to improve the control performance. Furthermore, based on the relaxed method, the intelligent approach of stability criterion can be regulated appropriately and the artificial TMD was found to be effective in reducing cross-wind vibrations.

AC harmonic elimination and reactive power compensation by voltage-type active filter (전압형 능동필터에 의한 교류고조파제거와 무효전력보상)

  • 김한성;최규하;신우석;이제필
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.688-692
    • /
    • 1988
  • The active filter system for harmonic current compensation is presented in this paper. The active filter, composed of a three-phase voltage-type PWM inverter and the capacitor, compensates both the harmonic currents and the reactive power by injecting the PWM current to the ac line. This paper describes the principle of harmonic current compensation, the calculation circuits for the harmonic currents to be injected, the several compensation characteristics. Also the experimental results are shown to verify the theory proposed in this paper.

  • PDF