• 제목/요약/키워드: Curing condition

Search Result 647, Processing Time 0.027 seconds

An Experimental Study on the Design-Concerte for Precast Concerte (문양 콘크리트의 PC 적용을 위한 실험적 연구)

  • Kim Jae Eun;An Moo Young;Kim Kwang Ki;Cho Sang Young;Kim Woo Jae;Jung Sang Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.161-164
    • /
    • 2004
  • The object of this study is vibrating compaction and curing method in the production process of Design concrete for precast concrete(Design-PC) product. From change of vibrating compaction time and pre-curing time, curing temperature which would be factors of product quality in Design-PC concrete production, and research of optimized steam curing condition from relations between curing condition and strength development, basic data of vibrating compaction time and concrete steam curing method for Design-PC will be presented.

  • PDF

A Study of Spraying Curing Compound for Concrete Pavement Considering Environmental Condition in Tunnel (터널내 환경을 고려한 콘크리트 포장의 양생제 살포기준 연구)

  • Ryu, SungWoo;Kwon, OhSun;Song, GeoRuemSoo;Lee, MinKyung;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.16 no.3
    • /
    • pp.51-57
    • /
    • 2014
  • PURPOSES : This study is to suggest tunnel length to spray curing compound, based on the field tests. METHODS : At first field test, length from the entrance of tunnel to wet wall was checked by visual survey. The second and third test, various sensors were installed in concrete or in tunnel, such as RH sensor, temperature sensor, portable weather station and etc.. And also, test for bleeding and retaining water of concrete were conducted to evaluate environmental effect on concrete pavement. RESULTS : The result of the field experiment for tunnel length to spray curing compound indicates that length changes depending on tunnel length, season, and location. Environmental condition of a short tunnel was not much different between location near entrance and at center of tunnel. However, in case of a medium and long tunnel, effect of outside environmental condition decreased, when location moved into tunnel center of it. CONCLUSIONS : From the testing results, it can be proposed that optimum tunnel length to spray curing compound is 60m for a medium and long tunnel, and whole length for a short tunnel.

Properties of Light Weight Foamed Concrete According to Curing Condition (양생조건에 따른 경량기포콘크리트의 특성)

  • Shin, Sang-Chul;Choi, Ji-Ho;Hong, Sung-Rog;Kim, Ji-Ho;Jeong, Ji-Yong;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.237-239
    • /
    • 2011
  • This study was performed to investigate the influence of curing temperature on the properties of light weight foamed concrete, manufactured on-site construction according to the various experimental factor such as temperature of material, curing temperature in air(5, 10, 20℃), curing time in air(5, 10, 15hour), and target density of hardened state(0.8, 1.2t/㎥). As a result, the influence of the curing temperature on various properties of foamed concrete is greater than curing time. When increasing temperature and time in air curing, progress of hydration is fast and compressive strength is increasing more and more. However, when considering the productivity, minimum curing time is required 15hours at 5℃, 10hours at 10℃, and 5hours at 20℃. If this condition is not required, there is some crack due to volume expansion on the surface of light weight foamed concrete.

  • PDF

Effect of curing treatments on the material properties of hardened self-compacting concrete

  • Salhi, M.;Ghrici, M.;Li, A.;Bilir, T.
    • Advances in concrete construction
    • /
    • v.5 no.4
    • /
    • pp.359-375
    • /
    • 2017
  • This paper presents a study of the properties and behavior of self-compacting concretes (SCC) in the hot climate. The effect of curing environment and the initial water curing period on the properties and behavior of SCC such as compressive strength, ultrasonic pulse velocity (UPV) and sorptivity of the SCC specimens were investigated. Three Water/Binder (W/B) ratios (0.32, 0.38 and 0.44) have been used to obtain three ranges of compressive strength. Five curing methods have been applied on the SCC by varying the duration and the conservation condition of SCC. The results obtained on the compressive strength show that the period of initial water curing of seven days followed by maturation in the hot climate is better in comparison with the four other curing methods. The coefficient of sorptivity is influenced by W/B ratio and the curing methods. It is also shown that the sorptivity coefficient of SCC specimens is very sensitive to the curing condition. The SCC specimens cured in water present a low coefficient of sorptivity regardless of the ratio W/B. Furthermore, the results show that there is a good correlation between ultrasonic pulse velocity and the compressive strength.

A Comparison Analysis on the Efficiency of Solar Cells of Shingled Structure with Various ECA Materials (다양한 ECA 소재를 활용한 shingled 구조의 태양전지 효율 비교 분석)

  • Jang, Jae Joon;Park, Jeong Eun;Kim, Dong Sik;Choi, Won Seok;Lim, Donggun
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.4
    • /
    • pp.1-9
    • /
    • 2019
  • Modules using 6 inch cells have problems with loss due to empty space between cells. To solve this problem made by shingled structure which can generate more power by utilizing empty space by increasing the voltage level than modules made in 6inch cell. Thus, in this paper, the c-Si cutting cells were produced using nanosecond green laser, and then the ECA was sprayed and cured to perform cutting cell bonding. Three types of ECA materials (B1, B2, B3) with Ag as the main component were used, and experimental conditions varied from 5 to 120 seconds of curing time, 130 to $210^{\circ}C$ of curing temperature, and 1 to 3 of curing numbers. As a results of experiments varying curing time, B1 showed efficiency 19.88% in condition of 60 seconds, B2 showed efficiency 20.15% in 90 seconds, and B3 showed efficiency 20.27% in 60 seconds. In addition, experiments with varying curing temperature, It was confirmed highest efficiency that 20.04% in condition of $170^{\circ}C$ with B1, 20.15% in condition of $150^{\circ}C$ with B2, 20.27% in condition of $150^{\circ}C$ with B3. These are because the Ag particles are densely formed on the surface to make the conduction path. After optimizing the conditions of temperature and curing time, the secondary-tertiary curing experiments were carried out. as the structural analysis, conditions of secondary-tertiary curing showed cracks that due to damp heat aging. As a result, it was found that the ECA B3 had the highest efficiency of 20.27% in condition of 60 seconds of curing time, $150^{\circ}C$ of curing temperature, and single number of curing, and that it was suitable for the manufacture of Solar cell of shingled structure rather than ECA B1 and B2 materials.

The Effects of the Dehumidifying Membrane Dryer for the Curing Processes of Waterborne Adhesives (수용성 접착제 경화 공정용 제습 막 건조기 시스템의 효과)

  • Yu, Seoyoon;Lim, Choong-Sun;Seo, Bongkuk
    • Journal of Adhesion and Interface
    • /
    • v.17 no.2
    • /
    • pp.62-66
    • /
    • 2016
  • The curing processes of waterborne adhesives are in general undergone by using hot-air dryer. The hot-air dryer curing the adhesives with heat has a disadvantage of requiring high temperature over $100^{\circ}C$ as well as curing time as long as 20 min. When it comes to the heat control, high temperature open disturbs the adhesion of substrates by extremely lowering the viscosity of the adhesives. Furthermore, the humidity resulting from the drying process makes the curing condition irregularly. In this report, dehumidifying membrane dryer was used in order to keep the curing process same by removing humidity caused by the evaporation of water during the drying process, and to shorten the curing time. Here, we compared the peel strength of attached substrates in the dehumidifying membrane dryer to find out appropriate curing condition and confirm the effects of the dehumidifying membrane.

A Study on the Strength Development Tendencies of Concrete Cores due to the Effect of Age (콘크리트 코어의 재령에 따른 강도 발현 성향에 관한 연구)

  • 권영웅;유재은;신정식;이성용;김민수;박송철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.751-756
    • /
    • 2003
  • This Paper concerns the compressive strength development tendencies of concrete according to their Ages and curing conditions. The test results are on follows; (1) The compressive strength development of concrete appears larger according to the curing conditions under water curing, condition structural curing and field curing conditions. (2) The compressive strength development rate of concrete after 28 days' curing becomes smaller, but the case of lower strength of concrete not.

  • PDF

A Study on the Strength Properties of Mortar Under Various Types and Contents of Accelerators for Freezing Resistance (내한촉진제의 종류 및 혼입양 변화에 따른 모르터의 강도특성에 관한 연구)

  • Lee, Sang-Soo;Won, Cheol;Park, Sang-Joon;Kim, Dong-Seok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.2
    • /
    • pp.151-156
    • /
    • 2002
  • When fresh concrete is exposed to low temperature, the concrete may suffer frost damage due to freezing at early ages and strength development may be delayed. One of the solution methods for resolve these problems is to reduce freezing temperature of concrete by the use of chemical admixture called Accelerators for freezing resistance. In this study, we investigate the effect on strength development of cement mortar using accelerators for freezing resistance with the variance curing condition. As the result of this study, the mortar using accelerators for freezing resistance show that continuously strength development in curing condition of -5$^{\circ}C$. And compressive strength under the variance temperature condition was higher than constant temperature condition in same maturity.

The Effect on Strength Development of Cement Mortar using Accelerators for Freezing Resistance with the Curing Condition (양생조건이 내한촉진제를 사용한 시멘트 모르타르의 강도증진에 미치는 영향에 관한 연구)

  • Won, Cheol;Kim, Dong-Seok;Park, Sang-Joon;Lee, Sang-Soo;Kim, Young-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.533-536
    • /
    • 2001
  • When fresh concrete is exposed to low temperature, the concrete may suffer frost damage due to freezing at early ages and strength development may be delayed. One of the solution methods for resolving these problems is to reduce freezing temperature of concrete by the use of chemical admixture called Accelerators for freezing resistance. In this study, we investigate the effect on strength development of cement mortar using accelerators for freezing resistance with the variance curing condition. As the result of this study, the mortar using accelerators for freezing resistance show that continuously strength development in curing condition of -5$^{\circ}C$. And compressive strength under the variance temperature condition was higher than fixed temperature condition in same maturity.

  • PDF

Volumetric Change of Concrete Subjected to Different Curing Condition (양생 조건에 따른 콘크리트의 체적 변화)

  • Lee Kwang Myong;Lee Hoi Keun;Lee Sung Jin;Baek Biehn
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.132-135
    • /
    • 2004
  • High-performance concrete (HPC) may be expected to differ from usual concrete with respect to shrinkage behavior, and it shows high autogenous shrinkage due to the use of very low water-binder ratio (w/b) and various admixtures. Therefore, in order to minimize the shrinkage stress and to ensure the service life of concrete structure, volumetric change of HPC should be understood. In this study, small prisms made of HPC with w/b of 0.32 and blast-furnace slag content of $0\%,\;30\%,\;and\;50\%$ were prepared to measure the volumetric changes such as autogenous shrinkage, drying shrinkage, and swelling under three different curing conditions. It was observed that the concrete cured. sealed condition showed only autogenous shrinkage while the concrete let to dry condition at temperature of $20^{\circ}C$ and relative humidity of $60\%$ during the test period showed both autogenous and drying shrinkage. Moreover, the concrete exposed to dry condition after 2-day water curing swelled and then started to shrink with age. The total shrinkage (autogenous+drying) of this concrete was smaller than that of the concrete cured dry condition, especially at early-age. Therefore, the early-age moisture curing is very effective to control or minimize the volumetric change and its induced stress of HPC.

  • PDF