• Title/Summary/Keyword: Curing behaviors

Search Result 80, Processing Time 0.023 seconds

Studies on Rheological Properties and Cure Behaviors of Difunctional Epoxy/Biodegradable Poly(butylene succinate) Blends (2관능성 에폭시/생분해성 폴리부틸렌 숙시네이트 블렌드의 유변학적 특성 및 경화거동에 관한 연구)

  • 박수진;김승학;이재락;민병각
    • Composites Research
    • /
    • v.15 no.6
    • /
    • pp.8-15
    • /
    • 2002
  • In this work, the effect of biodegradable poly(butylene succinate)(PBS) in difunctional epoxy(21:P) resin was investigated in terms of rheological properties, cure kinetics, thermal stabilities, and mechanical interfacial properties. Rheological properties of the blend system were measured under isothermal condition using a rheometer. Cross-linking activation energies($\textrm{E}_c$) were determined from the Arrhenius equation based on gel time and curing temperature. The $\textrm{E}_c$ was increased in the presence of 10 wt% PBS as compared with neat 2EP. From the DSC results of the blends, the cure activation energies($\textrm{E}_a$) showed a similar behavior with $\textrm{E}_c$ due to the increased intermolecular interaction between 2EP and PBS. The decomposed activation energies($\textrm{E}_t$) for the thermal stability derived from the integral method of Horowitz-Metzger equation, were also increased in 10 wt% PBS. In addition, 20 wt% PBS showed the highest critical stress intensity factor($\textrm{E}_{IC}$). which was explained by increasing the fracture toughness of the 2EP/PBS blend systems.

Synthesis and Characteristic of Novel Soluble Triazoleimide Oligomers with Terminated Arylacetylene

  • Zhou, Xiao'an;Du, Lei;Wan, Liqiang;Wang, Xiaofei;E, Yanpeng;Huang, Farong
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.9
    • /
    • pp.2603-2606
    • /
    • 2010
  • Novel soluble triazoleimide oligomers terminated with arylacetylene terminated were synthesized by the Cu(I)-catalysed 1,3-dipolar cycloaddition polymerization of diazides and imide-containing dialkyne. Several molecular weight triazoleimide oligomers were prepared from diazide and dialkyne monomers with different stoichiometric combinations. The curing behaviors of the oligomers were tested by differential scanning calorimetry (DSC). The thermal properties of the cured products were evaluated by DSC and thermogravimetric analysis (TGA). These cured oligomers showed the glass transition temperature of about $225-235^{\circ}C$ and the decomposition temperature (at 5% weight loss) of about $385-393^{\circ}C$ in nitrogen.

Dielectric and Optical Properties of InP Quantum Dot Thin Films

  • Mohapatra, Priyaranjan;Dung, Mai Xuan;Choi, Jin-Kyu;Oh, Jun-Ho;Jeong, Hyun-Dam
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.280-280
    • /
    • 2010
  • Semiconductor quantum dots are of great interest for both fundamental research and industrial applications due to their unique size dependant properties. The most promising application of colloidal semiconductor nanocrystals (quantum dots or QDs) is probably as emitters in biomedical labeling, LEDs, lasers etc. As compared to II-VI quantum dots, III-V have attracted greater interest owing to their less ionic lattice, larger exciton diameters and reduced toxicity. Among the III-V semiconductor quantum dots, Indium Phosphide (InP) is a popular material due to its bulk band gap of 1.35 (eV) which is responsible for the photoluminescence emission wavelength ranging from blue to near infrared with change in size of QDs. Nevertheless, in recent years, the exact type of collective properties that arise when semiconductor quantum dots (QDs) are assembled into two- or three-dimensional arrays has drawn much interest. The term "uantum dot solids" is used to indicate three-dimensional assemblies of semiconductor QDs. The optoelectronic properties of the quantum dot solids are known to depend on the electronic structure of the individual quantum dot building blocks and on their electronic interactions. This paper reports an efficient and rapid method to produce highly luminescent and monodisperse quantum dots solution and solid through fabrication of InP thin films. By varying the molar concentration of Indium to Ligand, QDs of different size were prepared. The absorption and emission behaviors were also studied. Similar measurements were also performed on InP quantum dot solid by fabricating InP thin films. The optical properties of the thin films are measured at different curing temperatures which show a blue shift with increase in temperature. The dielectric properties of the thin films were also investigated by Capacitance-voltage(C-V) measurements in a metal-insulator-semiconductor (MIS) device.

  • PDF

Studies on Cure Behavior and Rheological Properties of Tetrafunctional Epoxy/Biodegradable MAP Blends (4관능성 에폭시/생분해성 MAP 블렌드의 경화 거동 및 유변학적 특성에 관한 연구)

  • 박수진;김승학;이재락;김봉섭;홍성원
    • Polymer(Korea)
    • /
    • v.26 no.6
    • /
    • pp.767-777
    • /
    • 2002
  • In this work, biodegradable modified aliphatic polyester (MAP) in tetrafunctional epoxy (4EP) resin was investigated in terms of cure kinetics, thermal stabilities, rheological properties, and mechanical interfacial properties. DSC results of the blends show that the cure activation energies (E$\_$a/) were increased in 10 wt% of MAP compared with neat 4EP, due to the increasing intermolecular interaction between 4EP and MAP. The decomposed activation energies (E$\_$t/) derived from Coats-Redfern method, were increased within the 10∼30 wt% composition range of MAP contents, resulting from increasing the cross-linking density of the blend system. Rheological properties of the blend system were investigated under isothermal condition using a rheometer. Cross-linking activation energies (E$\_$c/) were determined from the Arrhenius equation based on gel time and curing temperature. As a result, the E$\_$c/ showed a similar behavior with E$\_$a/. The fracture toughness (K$\_$IC/) of the mechanical interfacial properties was discussed in semi-IPN behaviors of the casting specimen.

Computer Simulation of Rubber Flow for Mold Profile in Rubber Shaping Process (고무 성형 공정에서 금형 형상에 따른 고무 흐름의 컴퓨터 모사)

  • Lee, Dan Bi;Lee, Min A;Choi, Sung Hyun;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • v.49 no.3
    • /
    • pp.220-224
    • /
    • 2014
  • The tire tread is contacted with road surface directly. It gives significant effect on the breaking conditions, traction, noise and so on. The tread having grooves with complex geometry is molded by shaping process. The flow behavior of tread rubber in a mold affects the quality of the tread and it leads to the running performance of automobile. In this study, the flow behavior of rubber in shaping process has been investigated by computer simulation. The objective of flow simulation is the design of tread shape based on the contact of rubber on the mold surface and flow behavior of rubber. Different sequences of contact of rubber on the mold surface and flow behavior of rubber are observed according to the shape of tread on the mold surface. It was verified that the shape of tread gives significant effect on the flow behavior of rubber. Different flow behaviors of rubber and sequential contact of rubber to the mold surface were observed according to the shape of tread on the mold surface. Therefore, we have identified that the shape of tread give a change in the flow behavior of rubber.

Preparation and Properties of Modified Silicon-containing Arylacetylene Resin with Bispropargyl Ether

  • Zhang, Jian;Huang, Jianxiang;Yu, Xiaojiao;Wang, Canfeng;Huang, Farong;Du, Lei
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3706-3710
    • /
    • 2012
  • A novel silicon-containing arylacetylene resin (MSAR) modified by dipropargyl ether of bisphenol A (DPBPA) and dipropargyl ether of perfluorobisphenol A (DPPFBPA) was prepared separately. The curing behaviors of modified resins, DPBPA/MSAR and DPPFBPA/MSAR, were characterized with differential scanning calorimeter (DSC). The kinetic parameters of modified resins were obtained by the Kissinger and Ozawa methods. The results of dynamic mechanical analysis (DMA) revealed that the glass transition temperature ($T_g$) of the cured DPBPA/MSAR reached $486^{\circ}C$. According to the thermogravimetric analysis (TGA), the decomposition temperature ($T_{d5}$) of the cured resins and char yield ($Y_c$, $800^{\circ}C$) decreased as the dipropargyl ether loadings increased, especially in air. With the same weight loading, thermal stability of DPBPA/MSAR was better than that of DPPFBPA/MSAR. The carbon fiber (T300) reinforced composites exhibited excellent flexural properties at room temperature with a high property retention at $300^{\circ}C$.

Thermal Stability and Mechanical Interfacial Properties of DGEBA/PMR-15 Blend System Initiated by Cationic Latent Thermal Catalyst (잠재성 양이온 개시제를 이용한 DGEBA/PMR-15 블렌드계의 열안정성 및 기계적 계면 특성에 관한 연구)

  • Park, Soo-Jin;Lee, Hwa-Young;Han, Mijeong;Hong, Sung-Kwon
    • Journal of Adhesion and Interface
    • /
    • v.5 no.1
    • /
    • pp.3-11
    • /
    • 2004
  • In this work, the cure behaviors of the DGEBA/PMR-15 blends initiated by N-benzylpyrazinium hexafluoroantimonate (BPH) as a cationic latent catalyst were performed in DSC and DMA analyses. And, the thermal stabilities were carried out by TGA analysis and their mechanical interfacial properties of blends were measured in the context of critical stress intensity factor ($K_{IC}$). As a result, the curing activation energy ($E_a$) determined from Ozawa's equation in DSC and the relaxation activation energy ($E_r$) from DMA were increased with increasing PMA-15 content. Also, the thermal stabilities obtained from the integral procedural decomposition temperature (IPDT) and the glass transition temperature ($T_g$) were highly improved with increasing the PMR-15 content, which were probably due to the high heat resistance. And, the $K_{IC}$ showed a similar behavior with $E_a$, which was attributed to the improving of the interfacial adhesion or hydrogen bondings between intermolecular chains.

  • PDF

A Comparison Study on Reinforcement Behaviors of Functional Fillers in Nitrile Rubber Composites

  • Seong, Yoonjae;Lee, Harim;Kim, Seonhong;Yun, Chang Hyun;Park, Changsin;Nah, Changwoon;Lee, Gi-Bbeum
    • Elastomers and Composites
    • /
    • v.55 no.4
    • /
    • pp.306-313
    • /
    • 2020
  • To investigate the reinforcing effects of functional fillers in nitrile rubber (NBR) materials, high-structure carbon black (HS45), coated calcium carbonate (C-CaCO3), silica (200MP), and multi-walled carbon nanotubes (MWCNTs) were used as functional filler, and carbon black (SRF) as a common filler were used for oil-resistant rubber. The curing and mechanical properties of HS45-, 200MP-, and MWCNT-filled NBR compounds were improved compared to those of the SRF-filled NBR compound. The reinforcing effect also increased with a decrease in the particle size of the fillers. The C-CaCO3-filled NBR compound exhibited no reinforcing effect with increasing filler concentration because of their large primary particle size (2 ㎛). The reinforcing behavior based on 100% modulus of the functional filler based NBR compounds was compared by using several predictive equation models. The reinforcing behavior of the C-CaCO3-filled NBR compound was in accordance with the Smallwood-Einstein equation whereas the 200MP- and MWCNT-filled NBR compounds fitted well with the modified Guth-Gold (m-Guth-Gold) equation. The SRF- and HS45-filled NBR compounds exhibited reinforcing behavior in accordance with the Guth-Gold and m-Guth-Gold equations, respectively, at a low filler content. However, the values of reinforcement parameter (100Mf/100Mu) of the SRF- and HS45-filled NBR compounds were higher than those determined by the predictive equation model at a high filler content. Because the chains of SRF composed of spherical filler particles are similarly changed to rod-like filler particles embedded in a rubber matrix and the reinforcement parameter rapidly increased with a high content of HS45, the higher-structured filler. The reinforcing effectiveness of the functional fillers was numerically evaluated on the basis of the effectiveness index (��SRF/��f) determined by the ratio of the volume fraction of the functional filler (��f) to that of the SRF filler (��SRF) at three unit of reinforcing parameter (100Mf/100Mu). On the basis of their effectiveness index, MWCNT-, 200MP-, and HS45-filled compounds showed higher reinforcing effectiveness of 420%, 70%, and 20% than that of SRF-filled compound, respectively whereas C-CaCO3-filled compound exhibited lower reinforcing effectiveness of -50% than that of SRF-filled compound.

Simulation of Cracking Behavior Induced by Drying Shrinkage in Fiber Reinforced Concrete Using Irregular Lattice Model (무작위 격자 모델을 이용한 파이버 보강 콘크리트의 건조수축 균열 거동 해석)

  • Kim, Kunhwi;Park, Jong Min;Bolander, John E.;Lim, Yun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4A
    • /
    • pp.353-359
    • /
    • 2010
  • Cementitious matrix based composites are vulnerable to the drying shrinkage crack during the curing process. In this study, the drying shrinkage induced fracture behavior of the fiber reinforced concrete is simulated and the effects of the fiber reinforcement conditions on the fracture characteristics are analysed. The numerical model is composed of conduit elements and rigid-body-spring elements on the identical irregular lattice topology, where the drying shrinkage is presented by the coupling of nonmechanical-mechanical behaviors handled by those respective element types. Semi-discrete fiber elements are applied within the rigid-body-spring network to model the fiber reinforcement. The shrinkage parameters are calibrated through the KS F 2424 free drying shrinkage test simulation and comparison of the time-shrinkage strain curves. Next, the KS F 2595 restrained drying shrinkage test is simulated for various fiber volume fractions and the numerical model is verified by comparison of the crack initiating time with the previous experimental results. In addition, the drying shrinkage cracking phenomenon is analysed with change in the length and the surface shape of the fibers, the measurement of the maximum crack width in the numerical experiment indicates the judgement of the crack controlling effect.

Three-Dimensional High-Frequency Electromagnetic Modeling Using Vector Finite Elements (벡터 유한 요소를 이용한 고주파 3차원 전자탐사 모델링)

  • Son Jeong-Sul;Song Yoonho;Chung Seung-Hwan;Suh Jung Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.4
    • /
    • pp.280-290
    • /
    • 2002
  • Three-dimensional (3-D) electromagnetic (EM) modeling algorithm has been developed using finite element method (FEM) to acquire more efficient interpretation techniques of EM data. When FEM based on nodal elements is applied to EM problem, spurious solutions, so called 'vector parasite', are occurred due to the discontinuity of normal electric fields and may lead the completely erroneous results. Among the methods curing the spurious problem, this study adopts vector element of which basis function has the amplitude and direction. To reduce computational cost and required core memory, complex bi-conjugate gradient (CBCG) method is applied to solving complex symmetric matrix of FEM and point Jacobi method is used to accelerate convergence rate. To verify the developed 3-D EM modeling algorithm, its electric and magnetic field for a layered-earth model are compared with those of layered-earth solution. As we expected, the vector based FEM developed in this study does not cause ny vector parasite problem, while conventional nodal based FEM causes lots of errors due to the discontinuity of field variables. For testing the applicability to high frequencies 100 MHz is used as an operating frequency for the layer structure. Modeled fields calculated from developed code are also well matched with the layered-earth ones for a model with dielectric anomaly as well as conductive anomaly. In a vertical electric dipole source case, however, the discontinuity of field variables causes the conventional nodal based FEM to include a lot of errors due to the vector parasite. Even for the case, the vector based FEM gave almost the same results as the layered-earth solution. The magnetic fields induced by a dielectric anomaly at high frequencies show unique behaviors different from those by a conductive anomaly. Since our 3-D EM modeling code can reflect the effect from a dielectric anomaly as well as a conductive anomaly, it may be a groundwork not only to apply high frequency EM method to the field survey but also to analyze the fold data obtained by high frequency EM method.