Browse > Article
http://dx.doi.org/10.5012/bkcs.2010.31.9.2603

Synthesis and Characteristic of Novel Soluble Triazoleimide Oligomers with Terminated Arylacetylene  

Zhou, Xiao'an (Key Laboratory for Specially Functional Polymeric Materials and Related Technology of the Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology)
Du, Lei (Key Laboratory for Specially Functional Polymeric Materials and Related Technology of the Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology)
Wan, Liqiang (Key Laboratory for Specially Functional Polymeric Materials and Related Technology of the Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology)
Wang, Xiaofei (Key Laboratory for Specially Functional Polymeric Materials and Related Technology of the Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology)
E, Yanpeng (Key Laboratory for Specially Functional Polymeric Materials and Related Technology of the Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology)
Huang, Farong (Key Laboratory for Specially Functional Polymeric Materials and Related Technology of the Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology)
Publication Information
Abstract
Novel soluble triazoleimide oligomers terminated with arylacetylene terminated were synthesized by the Cu(I)-catalysed 1,3-dipolar cycloaddition polymerization of diazides and imide-containing dialkyne. Several molecular weight triazoleimide oligomers were prepared from diazide and dialkyne monomers with different stoichiometric combinations. The curing behaviors of the oligomers were tested by differential scanning calorimetry (DSC). The thermal properties of the cured products were evaluated by DSC and thermogravimetric analysis (TGA). These cured oligomers showed the glass transition temperature of about $225-235^{\circ}C$ and the decomposition temperature (at 5% weight loss) of about $385-393^{\circ}C$ in nitrogen.
Keywords
Triazoleimide; Oligomers; Arylacetylene;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
  • Reference
1 Wolfgang, H. B.; Robert, S. Macromol. Rapid Commun. 2007, 28, 15.   DOI
2 Lundberg, P.; Hawker, C. J.; Hult, A.; Malkoch, M. Macromol. Rapid Commun. 2008, 29, 998.   DOI
3 Meldal, M. Macromol. Rapid Commun. 2008, 29, 1016.   DOI
4 Diaz, D. D.; Punna, S.; Holzer, P.; Mcpherson, A. K.; Sharpless, K. B.; Fokin,V. V.; FINN, M. G. J. Polym. Sci. Part A: Polym. Chem. 2004, 42, 4392.   DOI
5 Gallardo, H.; Ely, F.; Bortoluzzi, A.; Conte J. G. Liquid Crystals 2005, 32, 667.   DOI
6 Nagao, Y.; Takasu, A. Macromol. Rapid Communications 2009, 30, 199.   DOI
7 Billiet, L.; Fournier, D.; Prez, F. D. J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 6552.   DOI
8 Wang, X. F.; Zhao, Z. F.; Tian, J. J.; Huang, F. R.; Du, L. Polym. J. 2009, 41, 498.   DOI
9 Wan, L. Q.; Luo,Y. H.; Xue, L.; Tian, J. J.; Hu, Y. H.; Qi, H. M.; Shen, X. N.; Huang, F. R.; Du, L.; Chen, X. B. J. Appl. Polym. Sci. 2007, 104, 1038.   DOI
10 Tian, J. J.; Wan, L. Q.; Huang, J. Z.; Hu, Y. H.; Huang, F. R.; Du, L. Polym. Adv. Technol. 2007, 18, 556.   DOI
11 Hu, Y. H.; Luo,Y. H.; Wan, L. Q.; Qi, H. M.; Huang, F. R.; Du, L. Acta Polymerica Sinica 2005, 4, 560.
12 Fang, X.; Rogers, D. F.; Scola, D. A.; Stevens, M. P. J. Polym. Sci. Polym. Chem. 1998, 36, 461.   DOI
13 Fang, X.; Simone, C. D.; Stevens, M. P. D.; Scola, A. Macromolecules 2000, 33, 1671.   DOI
14 Swanson, S. A.; Fleming, W. W.; Hofer, D. C. Macromolecules 1992, 25, 582.   DOI
15 Nakamura, K.; Ando, S. Polymer 2001, 42, 4045.   DOI
16 Shigeki, K.; Okita, K. Macromolecules 1998, 31, 2804.   DOI
17 Wilson, D.; Stenzenberger, H. D.; Hergenrother, P. M. Polyimides; Blackie: New York, USA, 1990; pp 4-57.
18 Jayaraman, S.; Srinivasan, R.; McGrath, J. E. J. Polym. Sci. Part A: Polm. Chem. 1995, 33, 1551.   DOI
19 Bryant, R. G.; Jensen, B. J.; Hergenrother, P. M. J. Appl. Polym. Sci. 1996, 59. 1249.   DOI
20 Meyer, G. W.; Pak, S. J.; Lee, Y. J.; McGrath, J. E. Polymer 1995, 11, 2303.
21 P Hergenrother, M. J.; Connell, W.; Smith, J. G. Polymer 2000, 41, 5073.   DOI
22 Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem. Int. Ed. 2001, 40, 2004.   DOI
23 Kim, Y. H.; Kim, H. S.; Kwon, S. K. Macromolecules 2005, 38, 7950.   DOI
24 Liaw, D. J.; Liaw, B. Y. Chem. Mater. 1998, 10, 734.   DOI
25 Abboud, J. M.; Foces-Foces, C.; Notario, R.; Trifonov, R. E. Eur. J. Org. Chem. 2001, 16, 3013.
26 Helms, B.; Mynar, J. L.; Hawker, C. J.; Frechet, J. M. J. Am. Chem. Soc. 2004, 126, 15020.   DOI
27 Hawker, C. J.; Wooley, K. L. Science 2005, 309, 1200.   DOI
28 Fournier, D.; Hoogenboom, R.; Schubert, U. S. Chem. Soc. Rev. 2007, 36, 1369.   DOI
29 Nandivada, H.; Lahann, J.; Jiang, X. Adv. Mater. 2007, 19, 2197.   DOI
30 Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless. K. B. Angew. Chem. Int. Ed. 2002, 41, 2596.   DOI