• Title/Summary/Keyword: Cumulative Detection Probability

Search Result 20, Processing Time 0.025 seconds

Measure of Effectiveness for Detection and Cumulative Detection Probability (탐지효과도 및 누적탐지확률)

  • Cho, Jung-Hong;Kim, Jea Soo;Lim, Jun-Seok;Park, Ji-Sung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.601-614
    • /
    • 2012
  • Since the optimized use of sonar systems available for detection is a very practical problem for a given ocean environment, the measure of mission achievability is needed for operating the sonar system efficiently. In this paper, a theory on Measure Of Effectiveness(MOE) for specific mission such as detection is described as the measure of mission achievability, and a recursive Cumulative Detection Probability(CDP) algorithm is found to be most efficient from comparing three CDP algorithms for discrete glimpses search to reduce computation time and memory for complicated scenarios. The three CDPs which are MOE for sonar-maneuver pattern are calculated as time evolves for comparison, based on three different formula depending on the assumptions as follows; dependent or independent glimpses, unimodal or non-unimodal distribution of Probability of Detection(PD) as a function of observation time interval for detection. The proposed CDP algorithm which is made from unimodal formula is verified and applied to OASPP(Optimal Acoustic Search Path Planning) with complicated scenarios.

Measure of Effectiveness Analysis of Passive SONAR System for Detection (수동소나시스템에서 탐지효과도 분석)

  • Cho, Jung-Hong;Kim, Jea-Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.272-287
    • /
    • 2012
  • The optimal use of sonar systems for detection is a practical problem in a given ocean environment. In order to quantify the mission achievability in general, measure of effectiveness(MOE) is defined for specific missions. In this paper, using the specific MOE for detection, which is represented as cumulative detection probability(CDP), an integrated software package named as Optimal Acoustic Search Path Planning(OASPP) is developed. For a given ocean environment and sonar systems, the discrete observations for detection probability(PD) are used to calculate CDP incorporating sonar and environmental parameters. Also, counter-detection probability is considered for vulnerability analysis for a given scenario. Through modeling and simulation for a simple case for which an intuitive solution is known, the developed code is verified.

Calculation of the Detection Range for a Given Cumulative Probability in Airborne Surveillance Radars (탐색 레이다에서 누적확률에 기인한 탐지거리 계산에 관한 연구)

  • Kim, Eun Hee;Roh, Ji-Eun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.1
    • /
    • pp.24-27
    • /
    • 2018
  • The performance measure of airborne radars is the range at which the cumulative probability of detection has some specified value, because the per-scan detection probability is an oscillatory function of the target range in airborne radars operating with the dynamic clutter environment. As a result, no one range, at which the per-scan detection probability has a given value, can give a meaningful description of the range performance. In this paper, we provide the equation to calculate the cumulative detection probability and show that the result of Monte Carlo simulation is same as the calculated value in a simple scenario. This verified Monte Carlo model will be used to evaluate the performance of airborne radars in various operating scenarios, at which the numerical calculation is difficult.

Measure of Effectiveness Analysis of Active SONAR for Detection (능동소나 탐지효과도 분석)

  • Park, Ji-Sung;Kim, Jea-Soo;Cho, Jung-Hong;Kim, Hyoung-Rok;Shin, Kee-Cheol
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.118-129
    • /
    • 2013
  • Since the obstacles and mines are of the risk factors for operating ships and submarines, the active sonar system is inevitably used to avoid the hazards in ocean environment. In this paper, modeling and simulation algorithm is used for active sonar systemto quantify the measure of mission achievability, which is known as Measure of Effectiveness(MOE), specifically for detection in this study. MOE for detection is directly formulated as a Cumulative Detection Probability(CDP) calculated from Probability of Detection(PD) in range and azimuth. The detection probability is calculated from Transmission Loss(TL) and the sonar parameters such asDirectivity Index (DI) calculated from the shape of transmitted and received array, steered beam patterns, and Reverberation Level (RL). The developed code is applied to demonstrating its applicability.

A Study on Design and Analysis of an Alert-Confirm Detection Method (Alert-Confirm 탐지 방식의 설계 및 성능 분석에 관한 연구)

  • Eunhee Kim;Hyunsu Oh;Sawon Min
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.140-146
    • /
    • 2024
  • Active electronically scanning antennas are faster and more flexible in beam-scheduling than mechanical antennas. Thus, they require an advanced resource management or detection methods to operate efficiently. In a surveillance radar performing periodic detection, alert-confirm detection is an excellent method to improve the cumulative detection probability by reducing the period while maintaining the detection probability. This paper proposes a design method for alert-confirm detection based on the parameters of the conventional design. We developed a simulator based on simulink@matworks and verified the result through Monte Carlo simulation.

A Methodology for Partitioning a Search Area to Allocate Multiple Platforms (구역분할 알고리즘을 이용한 다수 탐색플랫폼의 구역할당 방법)

  • An, Woosun;Cho, Younchol;Lee, Chansun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.225-234
    • /
    • 2018
  • In this paper, we consider a problem of partitioning a search area into smaller rectangular regions, so that multiple platforms can conduct search operations independently without requiring unnecessary coordination among themselves. The search area consists of cells where each cell has some prior information regarding the probability of target existence. The detection probability in particular cell is evaluated by multiplying the observation probability of the platform and the target existence probability in that cell. The total detection probability within the search area is defined as the cumulative detection probability for each cell. However, since this search area partitioning problem is NP-Hard, we decompose the problem into three sequential phases to solve this computationally intractable problem. Additionally, we discuss a special case of this problem, which can provide an optimal analytic solution. We also examine the performance of the proposed approach by comparing our results with the optimal analytic solution.

Optimal Acoustic Search Path Planning Based on Genetic Algorithm in Discrete Path System (이산 경로 시스템에서 유전알고리듬을 이용한 최적음향탐색경로 전략)

  • CHO JUNG-HONG;KIM JUNG-HAE;KIM JEA-SOO;LIM JUN-SEOK;KIM SEONG-IL;KIM YOUNG-SUN
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.1 s.68
    • /
    • pp.69-76
    • /
    • 2006
  • The design of efficient search path to maximize the Cumulative Detection Probability(CDP) is mainly dependent on experience and intuition when searcher detect the target using SONAR in the ocean. Recently with the advance of modeling and simulation method, it has been possible to access the optimization problems more systematically. In this paper, a method for the optimal search path calculation is developed based on the combination of the genetic algorithm and the calculation algorithm for detection range. We consider the discrete system for search path, space, and time, and use the movement direction of the SONAR for the gene of the genetic algorithm. The developed algorithm, OASPP(Optimal Acoustic Search Path Planning), is shown to be effective, via a simulation, finding the optimal search path for the case when the intuitive solution exists. Also, OASPP is compared with other algorithms for the measure of efficiency to maximize CDP.

A Cluster modeling using New Convergence properties (새로운 수렴특성을 이용한 클러스터 모델링)

  • Kim, Sung-Suk;Baek, Chan-Soo;Kim, Sung-Soo;Ryu, Joeng-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.382-384
    • /
    • 2004
  • In this parer, we propose a clustering that perform algorithm using new convergence properties. For detection and optimization of cluster, we use to similarity measure with cumulative probability and to inference the its parameters with MLE. A merits of using the cumulative probability in our method is very effectiveness that robust to noise or unnecessary data for inference the parameters. And we adopt similarity threshold to converge the number of cluster that is enable to past convergence and delete the other influence for this learning algorithm. In the simulation, we show effectiveness of our algorithm for convergence and optimization of cluster in riven data set.

  • PDF

Cumulative Probability of Prostate Cancer Detection Using the International Prostate Symptom Score in a Prostate-specific Antigen-based Population Screening Program in Japan

  • Kitagawa, Yasuhide;Urata, Satoko;Narimoto, Kazutaka;Nakagawa, Tomomi;Izumi, Kouji;Kadono, Yoshifumi;Konaka, Hiroyuki;Mizokami, Atsushi;Namiki, Mikio
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.17
    • /
    • pp.7079-7083
    • /
    • 2014
  • The International Prostate Symptom Score (IPSS) is often used as an interview sheet for assessing lower urinary tract symptoms (LUTS) at the time of prostate-specific antigen (PSA) testing during population-based screening for prostate cancer. However, the relationship between prostate cancer detection and LUTS status remains controversial. To elucidate this relationship, the cumulative probability of prostate cancer detection using IPSS in biopsy samples from patients categorized by serum PSA levels was investigated. The clinical characteristics of prostate cancer detected using IPSS during screening were also investigated. A total of 1,739 men aged 54-75 years with elevated serum PSA levels who completed the IPSS questionnaire during the initial population screening in Kanazawa City, Japan and underwent systematic transrectal ultrasonography-guided prostate biopsy between 2000 and 2013 were enrolled in the present study. Of the 1,739 men, 544 (31.3%) were diagnosed with prostate cancer during the observation period. The probability of cancer detection at 3 years in the entire study population was 27.4% and 32.7% for men with $IPSS{\leq}7$ and those with $IPSS{\geq}8$, respectively; there was no statistically significant difference between groups. In men with serum PSA levels of 6.1 to 12.0ng/mL at initial screening, the probability of cancer detection was significantly higher in men with $IPSS{\leq}7$ than in those with $IPSS{\geq}8$. There were no significant differences in clinical characteristics between groups of patients stratified by IPSS. These findings indicate that the use of IPSS for LUTS status evaluation may be useful for prostate cancer detection in the limited range of serum PSA levels.

Quickest Spectrum Sensing Approaches for Wideband Cognitive Radio Based On STFT and CS

  • Zhao, Qi;Qiu, Wei;Zhang, Boxue;Wang, Bingqian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1199-1212
    • /
    • 2019
  • This paper proposes two wideband spectrum sensing approaches: (i) method A, the cumulative sum (CUSUM) algorithm with short-time Fourier transform, taking advantage of the time-frequency analysis for wideband spectrum. (ii)method B, the quickest spectrum sensing with short-time Fourier transform and compressed sensing, shortening the time of perception and improving the speed of spectrum access or exit. Moreover, method B can take advantage of the sparsity of wideband signals, sampling in the sub-Nyquist rate, and it is more suitable for wideband spectrum sensing. Simulation results show that method A significantly outperforms the single serial CUSUM detection for small SNRs, while method B is substantially better than the block detection based spectrum sensing in small probability of the false alarm.