• Title/Summary/Keyword: Cultivation Physiology

Search Result 85, Processing Time 0.033 seconds

Temperature-dependent Differences in Heading Response at Different Growth Stages of Rice

  • Lee, HyeonSeok;Choi, MyoungGoo;Lee, YunHo;Hwang, WoonHa;Jeong, JaeHyeok;Yang, SeoYeong;Lim, YeonHwa;Lee, ChungGen;Choi, KyungJin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.3
    • /
    • pp.213-224
    • /
    • 2019
  • There is an increasing frequency in the occurrence of abnormal weather phenomena such as sharp increases and decreases in temperature. Under these weather conditions, the heading time of rice changes unexpectedly, which poses problems in agriculture. Therefore, we investigated the effect of temperature on the heading response at different growth stages in rice. During the period from transplanting to heading, the plants were subjected to different temperature treatments, each for a 9-day period, to observe the heading response. For the heading date analysis, "heading date" was defined as the number of days from transplanting to the appearance of the first spikelet. We found that the influence of temperature increased in the order of rooting stage, followed by meiosis, early tillering, spikelet differentiation, and panicle initiation stage in all ecological types and cultivars. In particular, unlike the results reported previously, the effect of temperature on heading during the photo-sensitive period was very small. Meanwhile, the influence of temperature on vegetative growth response at different growth stages was not consistent with heading response. These results can be used as basic data for predicting the variation in heading date owing to temperature variation at each growth stage. In addition, we propose that the concept of day length should be included in determining the influence of temperature on the photo-sensitive period.

Evaluation of Growth and Yield When Harvesting Italian Ryegrass Transplanted After Cultivation of Paddy Rice

  • Hyeonsoo Jang;Yun-Ho Lee;Hui-woo Lee;Pyeong Shin;Dae-Uk Kim;Jin-hui Ryu;Jong-Tag Youn
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.167-167
    • /
    • 2022
  • Seed production of italian ryegrass has a problem of lodging during ripening and a decrease in quality due to difficulty in drying seeds during harvest. Therefore, in order to produce high-quality Italian ryegrass in paddy fields, it was carried out to reduce the density and solve the lodging problem through transplanting. In this experiment, Lolium multiflorum cv. Kowinearly was transplanted in autumn from a paddy field in Sindong-ri, Gwansan-eup, Jangheung-gun, Jeollanam-do. var. Kowinearly was made into a bed at 90 g/box and stacked in boxes. It was transplanted on October 27th after 2 days of germination at 30℃ and 15 days of seedling and greening. When transplanting, they were transplanted at intervals of 30×14cm. The existing cultivation method, drill seedling, was sowed at a level of 50 kg/ha, and both transplanting and drilling were carried out at a nitrogen fertilization rate of 45 kg/ha. The number of ears during transplant cultivation was 1,016/m2 and the drilling tended to be higher at 2,278/m2, but this was probably due to the difference in seeding amount. The seed number of an ear tended to be 56% higher in transplantation, which had a significant impact on yield. The seed yield was 2,096 ka/ha in transplantation, which was 21% higher than that of drilling. When looking at the relationship with weed occurrence, there were areas where all the weeds, such as amul foxtail, occurred due to the low density. Even in the same transplanting area, the seed yield was about 1,000kg/ha less in the area where the weeds were abundant. It seems that weed management is important in paddy cultivation. Therefore, it seems necessary to develop an exclusive herbicide for Italian ryegrass cultivation.

  • PDF

Investigation of Changes in Grain Quality and Physicochemical Properties of Rice According to the Temperature during the Ripening Stage and Preharvest Sprouting (벼 등숙기 기온 및 수발아가 종실 품질 및 이화학적 특성에 미치는 영향)

  • Lee, HyeonSeok;Lee, YunHo;Hwang, WoonHa;Jeong, JaeHyeok;Yang, SeoYeong;Lee, ChungGen;Choi, MyoungGoo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.4
    • /
    • pp.294-302
    • /
    • 2020
  • Studies on the occurrence of rice preharvest sprouting (PHS) have primarily focused on temperature and rainfall duration at the time of PHS induction, but average temperature during grain filling can have a great influence on PHS. This study analyzed the effect of average temperature during grain filling on PHS occurrence and subsequent changes in grain quality after PHS. For two consecutive years, average temperature differences during grain filling were produced by varying the transplanting date. Artificial rainfall was treated under identical accumulated temperatures of 1200℃ after heading. It was confirmed that the occurrence of PHS was higher under high average temperature conditions during grain filling. In addition, the degree of grain quality reduction caused by PHS occurred more severely under high temperature conditions during grain filling. In order to reduce the risk of PHS occurrence and subsequent quality damage, it is important to control the planting date to avoid high-temperature conditions during grain filling.

Effects of Temperature on Grain Filling Properties of Rice Flour Varieties during the Ripening Stage (등숙기 온도에 따른 쌀가루 가공용 벼의 등숙특성 변이 구명)

  • Yang, SeoYeong;Hwang, WoonHa;Jeong, JaeHyeok;Lee, HyeonSeok;Lee, ChungGeun;Choi, MyoungGoo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • The processing of rice is one of the measures to expand the scope of rice use in response to the decrease in rice consumption. Since the main ingredient of rice processing is rice flour, "rice flour varieties" have been bred with the aim to improve the productivity and quality of rice flour. In order to study the variation in the ripening characteristics of rice flour varieties with respect to temperature, the average temperature after heading date was set at 28℃ (33/23℃), 22℃ (27/17℃), and 18℃ (23/13℃) inside the phytotron. We used Saenuri as non-glutinous rice variety, Seolgaeng as soft-type rice flour variety, and Baromi2 as powdered rice flour variety. At high temperatures (28℃), the grain weight of Baromi2 decreased by 21%. Its starch content also decreased by more than 10%, which was significantly lower than that of Saenuri and Seolgaeng. At low temperatures (18℃), the grain weight and starch content slightly increased or were similar in all varieties. An analysis of changes in the grain weight due to effective accumulated temperature through the sigmoid function showed that the velocity of grain-filling slowed significantly when Baromi2 was exposed to low temperature during the ripening stage compared to the other varieties. Therefore, the transplanting time of Baromi2 should be delayed to avoid high temperatures during the ripening stage. However, because the ripening period is not properly secured under low temperature conditions, grain filling may not be sufficient.

Studies on the Temperature Response and Critical Day-length Affecting the Heading Date of Major Cultivating Rice Varieties in Recent Korean Paddy Field (농가재배 주요 벼 품종들의 출수에 영향을 미치는 온도 반응과 한계일장 구명 연구)

  • Lee, HyeonSeok;Hwang, WoonHa;Jeong, JaeHyeok;Yang, SeoYeong;Lim, YeonHwa;Choi, MyoungGoo;Jeong, NamJin;Lee, ChungGen;Choi, KyungJin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.4
    • /
    • pp.323-335
    • /
    • 2019
  • Rice is sensitive to day-length and short-day plants. It has a characteristic that the photosensitivity response required for flower bud differentiation decreases under long-day conditions. To identify critical photoperiod required for flower bud differentiation of major cultivation rice varieties, the average temperature was fixed at 28 ℃, and the day length was set at 12 hours and 10 minutes intervals from 13 hours to 14 hours 30 minutes. The critical photoperiod for each cultivar was set to day-length, where the daily cumulative response [(X(Critical Photoperiod)-Y(Set day-length))/(X(Critical Photoperiod)-12:00(Optimal Day-length)) × (28.0(Set Temperature)-10(Minimum Temperature))/(29.2(Maximum Temperature)-10(Minimum Temperature))] was the same for each day-length conditions. The flower bud differentiation time of all varieties was 32 days before heading at the average temperature of 28 ℃ conditions. The critical photoperiod of the early maturing type, such as Woonkwang, Odae, Koshihikari, Jopyeong, were 19:20, 18:14, 18:58, 17:30, respectively. Medium maturing type, such as Daebo, Haiami, Samdeok, were 16:08, 16:15, 16:55, respectively. Mid-late maturing type, such as Saenuri, Sindongjin, Chucheong, Samkwang, Ilpum, Saeilmi, Hwangkeumnuri, Dongjinchal, Ilmi, Hopum, Yeonghojinmi, were 15:58, 15:56, 16:36, 16:44, 15:35, 16:26, 15:33, 16:20, 16:29, 16:13, 15:41.

Effects of Shading on the Growth and Chlorophyll Fluorescence under Agrivoltaic System Conditions

  • Hoejeong Jeong;Myeong-Gue Choi;Woon-Ha Hwang
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.120-120
    • /
    • 2022
  • Agrivoltaic System (AVS) was introduced with the concept that it could generate electricity by using the extra light remain after crops use for photosynthesis in farm, which can earn additional income. However, crop yield was declined under the AVS condition due to the decrease in light energy. In the past, many researchers have been studied about crop states under shading conditions. However, the phenomenon of partial shading such as under the AVS is not well studied. In this study, to figure out the response of crop under the different light conditions, the electron transport rate (ETR) and non-photochemical quenching (NPQ) of rice was investigated using the chlorophyll fluorescence measurement. Also, physiological changes of crops under the shading conditions were investigated. The growth experiment under partial shading under AVS and overall shading which made of 35% shade cloth was conducted to understand the eco-physiological responses of rice to light in terms of the photosynthesis. Under the shading conditions, SPAD value and chlorophyll contents were higher, but the leaf thickness was lower than control. The overall shading condition show lower ETR than others during the growing season. In contrast, NPQ was higher than other treatments. This means the available light energy cannot contribute to photosynthesis under the shading condition.

  • PDF

Evaluation of Rice Nitrogen Utilization Efficiency under High Temperature and High Carbon Dioxide Conditions

  • Hyeonsoo Jang;Wan-Gyu Sang;Yun-Ho Lee;Hui-woo Lee;Pyeong Shin;Dae-Uk Kim;Jin-Hui Ryu;Jong-Tak Youn
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.168-168
    • /
    • 2022
  • According to the 5th Climate Change Report, global average temperature in 2081~2100 will increase 1.8℃ based on RCP 4.5 and 3.7℃ based on RCP 8.5 from the current climate value (IPCC Working Group I AR5). As temperature is expected to increase due to global warming and the intensity and frequency of rainfall are expected to increase, damage to crops is expected, and countermeasures must be taken. This study intends to evaluate rice growth in terms of nitrogen utilization efficiency according to future climate change conditions. In this experiment, Oryza sativa cv. Shindongjin were planted at the SPAR facility of the NICS in Wanju-gun, Jeollabuk-do on June 10, and were planted and grown according to the standard cultivation method. Cultivation conditions are high temperature, high CO2 (current temperature+4.7℃·CO2 800ppm), high temperature (current temperature+4.7℃·CO2 400ppm), current climate (current tempreture·CO2 400 ppm). Nitrogen was varied as 0, 9, 18 kg/10a. The N content and C/N ratio of all rice leaves, stems, and seeds increased at high temperature, and the N content and C/N ratio decreased under high temperature and high CO2 conditions com pared to high temperature. Compared to the current climate, NUE increases by about 8% under high temperature and high CO2 conditions and by about 2% under high temperature conditions. This seems to be because the increase in temperature and CO2 induced the increase in biomass. ANUE related to yield decreased by about 70% compared to the current climate under high temperature conditions, and decreased by about 45% at high temperature and high CO2, showing a tendency to decrease compared to high temperature. This appears to be due to reduced fertility and poor ripening due to high temperature stress. However, as the nitrogen increased, the number of ears and the number of grains increased, slightly offsetting the production reduction factor.

  • PDF

Influence of Different Sugar Regimes on the Growth of Callus Culture of Taxus baccata L. and the Production of Taxanes

  • Silhava, Irena;Lipavska, Helena;Vanek, Tomas
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.5
    • /
    • pp.401-405
    • /
    • 2000
  • Influence of fructose addition to the cultivation medium on the production of taxanes and the growth of callus culture of Taxus baccata was studied. The cultures showed an ability to adjust to the substitution of some of the sucrose in the media by fructose and the fresh biomass accumulation was higher on the media containing different concentrations of fructose during the second cultivation period.

  • PDF

Changes in Growth and Yield of Different Rice Varieties under Different Planting Densities in Low-Density Transplanting Cultivation (벼 드문모심기 재식밀도에 따른 품종별 생육 및 수량 변이)

  • Yang, SeoYeong;Hwang, WoonHa;Jeong, JaeHyeok;Lee, HyeonSeok;Lee, ChungGeun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.4
    • /
    • pp.279-288
    • /
    • 2021
  • Low-density transplanting is a cultivation technology that reduces labor and production costs. In this study, the growth and yield of several varieties with different tillering characteristics were analyzed in order to establish an appropriate planting density for low-density transplanting. Varieties with Low-Tillering (LT), Medium-Tillering (MT), and High-Tillering (HT) were planted at a density of 37-80 hills/3.3 m2. As the planting density decreased, the number of tillers per hill increased, but the number of tillers per square meter of hill decreased, especially for the LT variety. Decreasing density extended the tillering stage, which was longest in the LT variety. As the planting density decreased, SPAD(Soil plant analysis development, chlorophyll meter) values just before heading increased while canopy light interception decreased. Such changes were much greater in the LT variety than in the MT and HT varieties. The heading date tended to be delayed by 0-2 days as the planting density decreased, and there was no difference in the length of the period from first heading to full heading. As the number of spikelets per panicle increased, the number of spikelets per square meter did not differ according to the planting density. Decreasing planting density did not affect the grain weight; nevertheless, the yield ultimately decreased because of the decreasing ripening rate. The optimal planting density for stable low-density transplanting cultivation was determined to be over 50 hills/3.3 m2. In addition, these results suggest that LT varieties should be avoided, since these showed large decreases in growth and yield with decreasing planting density.