• Title/Summary/Keyword: Cucumis melo L.

Search Result 139, Processing Time 0.033 seconds

Growth and Quality of Muskmelon (Cucumis melo L.) as Affected by Fruiting Node Order, Pinching Node Order and Harvest Time in Hydroponics Using Coir Substrate (코이어 배지를 이용한 멜론(Cucumis melo L.) 수경재배 시 착과 절위, 적심 절위 및 과실 수확시기에 따른 멜론의 생육 및 품질 특성)

  • Lim, Mi Young;Choi, Su Hyun;Choi, Gyeong Lee;Kim, So Hui;Jeong, Ho Jeong
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.406-413
    • /
    • 2020
  • This study was conducted to find out optimum fruiting node order, pinching node order, and harvesting time in hydroponics using coir substrates to produce high quality melon (Cucumis melo L.) fruit. Three plants per coir slab (100 × 20 × 10 cm) were planted for each treatment. Yamazaki standard nutrient solutions for melon were supplied with 1.8, 2.0, and 2.3 dS·m-1 at the early, middle (fruit enlargement step), and late growth stages, respectively. Two cultivars of 'PMR Dalgona' and 'Earl's Aibi' were used for fruiting node order and pinching node order experiments. Fruiting node treatments were conducted three replications (8-10 th, 11-13 th, and 14-15 th nodes) and pinching node treatments treated with three replications (18 th, 21 th, and 24 th nodes). Two cultivars of 'PMR Dalgona' and 'Earl's Crown' were used for fruit harvesting time experiment and treated with in four replications (45, 50, 55, and 60 days after fruiting). In growth characteristics, the leaf width and leaf area of 'PMR Dalgona' were the greatest 28.2 cm and 10,845 ㎠. Respectively, 11-13 th fruiting nodes or more. The node length of 'Earl's Aibi' was the longest by 147.6 cm at 11-13 th fruiting nodes. For fruit quality characteristics, the fruit weight of 'Earl's Aibi' at 11-13 th fruiting node fruiting was the greatest by 2.0 kg. The soluble solids content (SSC) of 'PMR Dalgona' was the highest by 14.5 °Brix at 8-10 th nodes in fruiting node orders and 14.5 °Brix at the 24 th pinching node order, respectively with significant difference. The SSC tends to increase in the same for both cultivars of 'PMR Dalgona' and 'Earl's Aibi' as the position of fruiting node was lower. The SSC and fruit weight of melon harvested at 55-60 days after fruiting was the best. From the results of this study, most of SSC tends to increase in the lower position of fruiting node order and the higher pinching node order, whereas the fruit weight shows a tendency of increasing with higher fruiting node. In addition, the SSC of fruit increased as the number of days after fruiting increased, and further research is needed for more various cultivars. In melon hydroponics using coir substrates, it is needed to figure out the characteristics of each cultivar to determine optimum fruiting node order, pinching node order, and fruit harvest time.

Pathogenicity of Didymella bryoniae on the Seedlings of Cucurbits (오이류 유묘에 대한 덩굴마름병균의 병원성)

  • Lee Du Hyung
    • Korean Journal Plant Pathology
    • /
    • v.1 no.3
    • /
    • pp.173-177
    • /
    • 1985
  • The objective of the study is to determine differences between cucurbits in the pathogenicity of Didymella bryoniae isolated from the naturally infected seeds of cucumber and pumpkin. Primary seedling infection of cucumber(Cucumis sativus L.), oriental melon(Cucumis melo var. makuwa Makino), pumpkin(Cucurbita pepo L.) and watermelon (Citrullus vulgaris Shrad.) occurred on the radicle, hypocotyl and cotyledons and symptoms on each crop were very similar. Infection of the radicle generally caused pre-emergence rot, while infection on the hypocotyl and cotyledons provided further inoculum for infection of the first true leaves and the stem. In cross inoculation tests, all isolates of D. bryoniae could infect cucumber, oriental melon, pumpkin and watermelon at different growth stages and there were not much differences in pathogenicity or susceptibility between isolates of the pathogen and crops tested. The susceptibility of cucumber and pumpkin was markedly influenced by prevailing humid conditions.

  • PDF

Expression Profiling of MLO Family Genes under Podosphaera xanthii Infection and Exogenous Application of Phytohormones in Cucumis melo L. (멜론 흰가루병균 및 식물 호르몬 처리하에서 MLO 유전자군의 발현검정)

  • Howlader, Jewel;Kim, Hoy-Taek;Park, Jong-In;Ahmed, Nasar Uddin;Robin, Arif Hasan Khan;Jung, Hee-Jeong;Nou, III-Sup
    • Journal of Life Science
    • /
    • v.26 no.4
    • /
    • pp.419-430
    • /
    • 2016
  • Powdery mildew disease caused by Podosphaera xanthii is a major concern for Cucumis melo production worldwide. Knowledge on genetic behavior of the related genes and their modulating phytohormones often offer the most efficient approach to develop resistance against different diseases. Mildew Resistance Locus O (MLO) genes encode proteins with seven transmembrane domains that have significant function in plant resistance to powdery mildew fungus. We collected 14 MLO genes from ‘Melonomics’ database. Multiple sequence analysis of MLO proteins revealed the existence of both evolutionary conserved cysteine and proline residues. Moreover, natural genetic variation in conserved amino acids and their replacement by other amino acids are also observed. Real-time quantitative PCR expression analysis was conducted for the leaf samples of P. xanthii infected and phyto-hormones (methyl jasmonate and salicylic acid) treated plants in melon ‘SCNU1154’ line. Upon P. xanthii infection using 7 different races, the melon line showed variable disease reactions with respect to spread of infection symptoms and disease severity. Three out of 14 CmMLO genes were up-regulated and 7 were down-regulated in leaf samples in response to all races. The up- or down-regulation of the other 4 CmMLO genes was race-specific. The expression of 14 CmMLO genes under methyl jasmonate and salicylic acid application was also variable. Eleven CmMLO genes were up-regulated under salicylic acid treatment, and 7 were up-regulated under methyl jasmonate treatments in C. melo L. Taken together, these stress-responsive CmMLO genes might be useful resources for the development of powdery mildew disease resistant C. melo L.

Screening of Resistance Melon Germplasm to Phytotpthora Rot caused by Phytophthora Capsici

  • Kim, Min-Jeong;Shim, Chang-Ki;Kim, Yong-Ki;Jee, Hyeong-Jin;Hong, Sung-Jun;Park, Jong-Ho;Lee, Min-Ho;Han, Eun-Jung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.57 no.4
    • /
    • pp.389-396
    • /
    • 2012
  • Melon (Cucumis melo) is an annual herbaceous plant of the family Cucurbitaceae. Phytophthora rot, caused by Phytophthora capsici is a serious threat to cucurbits crops production as it directly infects the host plant, and it is difficult to control because of variable pathogenicity. This study investigated the resistance of 450 accessions of melon germplasm against Phytophthora rot by inoculating the seedlings with sporangial suspension ($10^{5\;or\;6}$ zoosporangia/ml) of P. capsici. Disease incidence of Phytophthora rot was observed on the melon germplasm at 7-day intervals for 35 days after inoculation. Susceptible melon germplasm showed either severe symptoms of stem and root rot or death of the whole plant. Twenty out of 450 tested accessions showed less than 20% disease incidence, of which five accessions showed a high level of resistance against Phytopthtora rot. Five resistant accessions, namely IT119813, IT138016, IT174911, IT174927, and IT906998, scored 0% disease incidence under high inoculum density of P. capsici ($10^6$ zoosporangia/mL). We recommend that these candidate melon germplasm may be used as genetic resources in the breeding of melon varieties resistant to Phytophthora rot.

Determination of NPK Concentration in Fertigation Solution for Production of Greenhouse Oriental Melon (Cucumis melo L.) Using Response Surface Methodology (반응표면분석에 의한 참외 관비액 농도결정)

  • Seo, Young-Jin;Yeon, Il-Kweon;Shin, Yong-Seub;Suh, Dong-Whan;Choi, Seong-Yong;Park, So-Deuk;Jang, Won-Cheol;Suh, Jun-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.492-496
    • /
    • 2012
  • Fertigation with drip irrigation provides effective and cost-efficient way to supply both nutrient and water to crop. However, inappropriate management of fertigation systems may cause inefficient nutrient and water use, thereby diminishing expected yield benefits as well as contributing to deterioration of soil properties. In this study, greenhouse experiments were conducted to investigate the optimal concentration of N, P and K fertigation solution for maximum production of oriental melon (Cucumis melo L.) using a response surface methodology, to evaluate an efficiency of nutrients uptake and an effect on soil chemical properties. Canonical analysis of response surface and contour plot interpretation revealed that $108.3mg\;L^{-1}$ of nitrogen (N), $54.8mg\;L^{-1}$ of phosphorous (P) and $158.3mg\;L^{-1}$ of potassium (K) resulted in maximim yield of oriental melon ($2,966kg\;10a^{-1}$). Compared to conventional practice, fertigation increased fruit yield up to 23.0% (p<0.001), uptake of N and K by plant also up to 33.3% (p<0.001) and 15.7% (p<0.01), respectively. These results suggest that fertigation has the advantage of the increase in yield and fertilizer use efficiency.

Change of Biological Activity of Melon (Cucumis melo L.) according to Frozen Storage Period (냉동저장기간에 따른 멜론(Cucumis melo L.)의 생리활성 변화)

  • Cho, Jun-Gu;Youn, Sun-Joo;Lee, Eun-Tag;Kim, Tae-Wan;Kwoen, Dae-Jun
    • Journal of Applied Biological Chemistry
    • /
    • v.52 no.4
    • /
    • pp.200-204
    • /
    • 2009
  • The change of biological activities of melon were investigated during frozen storage. The total phenolic concentrations in melon juice and water extract were 296.25 and $433.25\;{\mu}g/mL$, respectively. The total flavonoid contents in melon juice and water extract were 20.83 and $53.58\;{\mu}g/mL$, respectively. Antioxidant activities of melon juice and water extract were determined. The DPPH of water extract of melon (85.84%) was higher than the melon juice (60.58%). ABTS of melon juice and water extract were 94.50 and 99.30%, respectively. SOD-like activity and xanthine oxidase inhibitory activity of melon of water extracts were higher than those of melon juice. $\alpha$-Glucosidase inhibitory activity of melon juice and water extract were 22.42 and 23.43%, respectively. The changes in the antioxidant activity of melon was insignificant until 6 months of frozen storage. Therefore, it was expected that frozen storage of melon was useful preservation expedient for consistent supply of raw materials.

Effects of Non-drainage Hydroponic Culture on Growth, Yield, Quality and Root Environments of Muskmelon (Cucumis melo L.) (멜론 수경재배 시 배액제로화가 근권환경 및 수량에 미치는 영향)

  • Chang, Young Ho;Hwang, Yeon Hyeon;An, Chul Geon;Yoon, Hae Suk;An, Jae Uk;Lim, Chae Shin;Shon, Gil Man
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.348-353
    • /
    • 2012
  • This study was conducted to figure out the possibility of non-drainage in muskmelon (Cucumis melo L.) hydroponics culture. Plants were grown under 3 different levels of drainage, standard (20~40%, SD), minimum (5~10%, MD), and non-drainage (ND). Throughout cultivation periods, constant water content and electrolyte conductivity changes in root zone were observed in SD in the range of 60~70% and $1.5{\sim}2.5dS{\cdot}m^{-1}$, respectively. ND treatment caused the fluctuation in water content and electrolyte conductivity of root zone and its change ranges were 30~50% in water content and $2{\sim}6dS{\cdot}m^{-1}$ in electrolyte conductivity, but ND treatment did not decrease fruit quality. Even if fruit fresh weight was slightly lower in ND with 1,863 g, than in SD with 1,990 g, the fruit weight in ND meets standard market size, 1,800~2,000 g. Higher soluble solids content was observed in fruit in ND than in SD and MD. Total amount of drainage per plant was 27,718, 15,769 and 2,346 mL in SD, MD and ND, respectively. SD showed $83.2m^3$ drainage, 34.5% drainage of irrigation amount whereas required total irrigation amount in ND was very low with $7m^3$.

Occurrence of Root-knot Nematodes on Fruit Vegetables Under Greenhouse Conditions in Korea (과채류 시설재배지의 뿌리혹선충 문제)

  • 김동근
    • Research in Plant Disease
    • /
    • v.7 no.2
    • /
    • pp.69-79
    • /
    • 2001
  • Meloidogyne arenaria race 2 (59%) is widely distributed, followed by M. incognita race 1 (23%), and an unknown race of M. incognita (18 %) in greenhouses in southern Korea. The key character to distinguish between M. arenaria and M. incognita is excretory pore in female head. When oriental melon, Cucumis melo L., grafted on Shintozoa (Cucurbit maxima x Cu. moschata) is transplanted in February in a plastic tunnel inside a greenhouse infested with M. arenaria, nematodes produced egg masses on roots at 40 days after transplanting and the soil juveniles (J2) population reach maximum in July to 3,817/100 ㎤. Juveniles are distributed relatively uniform over the 180-cm-wide row horizontally and the highest density occurs at 0-25 cm soil depth. For the control of root-knot nematodes, rice rotation, solarization, and soil addition treatments are the most effective (P=0.05); treatments reduce number of J2 over 90% and increase yield two times. Corn retation, fosthiazate, and soil drying treatment are moderately effective, while sesame and green onion rotations are not effective. The relationship between M. arenaria and yield of oriental melon is adequately described by a linear regression model. In the test with wild Cucumis genetic sources introduced from U.S.Dept. of Agriculture (USDA), one of C.heptadactylus, two of C.anguria, two of C. anguria var. longaculeatus, nine of C. metuliferus are resistant to both species of root-knot nematodes.

  • PDF

Soil EC and Yield and Quality of Oriental Melon (Cucumis melo L. var. makuwa Mak.) as affected by Fertigation (참외의 관비재배가 토양 EC, 참외의 수량 및 품질에 미치는 영향)

  • Jun, Ha Joon;Shin, Yong Seup;Suh, Jun Kyu
    • Journal of Bio-Environment Control
    • /
    • v.21 no.3
    • /
    • pp.186-191
    • /
    • 2012
  • Experiments were conducted to investigate the effect of fertigation (fertilizer-added irrigation) on soil EC (electrical conductivity), nitrogen and calcium content in soil, vine growth and fruit yield of oriental melon (Cucumis melo L. var. makuwa Mak.). Soil EC was increased with the frequency of fertigation (Yamazaki's solution for melon, 900 L/1,000 plants, each time) up to $0.8dS{\cdot}m^{-1}$ as compared to that of conventional irrigation ($0.2dS{\cdot}m^{-1}$). Ca content in soil also increased in fertigation fields. Vine dry weigh (20 days after planting) was significantly increased in fertigation plot. Markedly increases in marketable fruit yield and lower rate of off-shape fruit were recorded with the increase in fertigation frequency. Mean fruit weight and soluble solids contents ($^0Brix$) in fruit were not affected by fertigation. Fresh weight loss during storage was significantly higher in fruits harvested from 2 times fertigation (09:00 and 18:00) plot than conventional irrigation and the 1 time fertigation ones.

Prediction of Consumer Acceptance of Oriental Melon based on Physicochemical and Sensory Characteristics (이화학적·관능적 품질 특성에 기반한 참외의 소비자 기호도 예측)

  • Lee, Da Uhm;Bae, Jeong Mi;Lim, Jeong Ho;Choi, Jeong Hee
    • Horticultural Science & Technology
    • /
    • v.35 no.4
    • /
    • pp.446-455
    • /
    • 2017
  • We investigated the physicochemical and sensory characteristics of oriental melon (Cucumis melo L.) to provide a consumer-oriented quality index. Oriental melon fruits were harvested at 20, 25, or 30 days after fruit set (DAFS), and each group was sorted by size (small, medium, and large). Fruits harvested at 25 and 30 DAFS had higher CIE $a^*$ and $b^*$ values, higher soluble solids content (SSC), and lower CIE $L^*$, firmness, and titratable acidity (TA) values than fruits harvested at 20 DAFS. Fruits harvested at 25 and 30 DAFS scored more highly for overall acceptance. A significant correlation was found between physicochemical characteristics and overall acceptance. In the delayed-harvest sample, increased sweetness and yellowness, and decreased sensorial texture were associated with an increase in overall acceptance. In principal component analysis, F1 and F2 explained 62.16% and 17.91% of the total variance (80.07%), respectively. Regression analysis of overall acceptance and F1 gave a coefficient of determination ($r^2$) of 0.87. Our results show that consideration of the physicochemical characteristics (CIE value, SSC, pH, SSC/TA ratio, and firmness) and sensory characteristics (yellowness, placenta area condition, oriental melon odor, sweetness, oriental melon flavor, texture, and off odor) of oriental melon in this way can be used as quality indices to predict consumer acceptance.