Browse > Article
http://dx.doi.org/10.5352/JLS.2016.26.4.419

Expression Profiling of MLO Family Genes under Podosphaera xanthii Infection and Exogenous Application of Phytohormones in Cucumis melo L.  

Howlader, Jewel (Department of Horticulture, Sunchon National University)
Kim, Hoy-Taek (Department of Horticulture, Sunchon National University)
Park, Jong-In (Department of Horticulture, Sunchon National University)
Ahmed, Nasar Uddin (Department of Horticulture, Sunchon National University)
Robin, Arif Hasan Khan (Department of Horticulture, Sunchon National University)
Jung, Hee-Jeong (Department of Horticulture, Sunchon National University)
Nou, III-Sup (Department of Horticulture, Sunchon National University)
Publication Information
Journal of Life Science / v.26, no.4, 2016 , pp. 419-430 More about this Journal
Abstract
Powdery mildew disease caused by Podosphaera xanthii is a major concern for Cucumis melo production worldwide. Knowledge on genetic behavior of the related genes and their modulating phytohormones often offer the most efficient approach to develop resistance against different diseases. Mildew Resistance Locus O (MLO) genes encode proteins with seven transmembrane domains that have significant function in plant resistance to powdery mildew fungus. We collected 14 MLO genes from ‘Melonomics’ database. Multiple sequence analysis of MLO proteins revealed the existence of both evolutionary conserved cysteine and proline residues. Moreover, natural genetic variation in conserved amino acids and their replacement by other amino acids are also observed. Real-time quantitative PCR expression analysis was conducted for the leaf samples of P. xanthii infected and phyto-hormones (methyl jasmonate and salicylic acid) treated plants in melon ‘SCNU1154’ line. Upon P. xanthii infection using 7 different races, the melon line showed variable disease reactions with respect to spread of infection symptoms and disease severity. Three out of 14 CmMLO genes were up-regulated and 7 were down-regulated in leaf samples in response to all races. The up- or down-regulation of the other 4 CmMLO genes was race-specific. The expression of 14 CmMLO genes under methyl jasmonate and salicylic acid application was also variable. Eleven CmMLO genes were up-regulated under salicylic acid treatment, and 7 were up-regulated under methyl jasmonate treatments in C. melo L. Taken together, these stress-responsive CmMLO genes might be useful resources for the development of powdery mildew disease resistant C. melo L.
Keywords
Cucumis melo; Mildew Resistance Locus O; phytohormone treatment; Podosphaera xanthii; powdery mildew;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Aist, J. R. and Bushnell, W. R. 1991. Invasion of plants by powdery mildew fungi, and cellular mechanisms of resistance. In The Fungal Spore and Disease Initiation in Plants and Animals. Edited by Cole GT, Hoch HC. New YorK: plenum press 321-345.
2 Bai, Y., Pavan, S., Zheng, Z., Zappel, N., Reinstädler, A., Lotti, C. De Giovanni, C., Ricciardi, L., Lindhout, P., Visser, R. G. F., Theres, K. and Panstruga, R. 2008. Naturally occurring broad-spectrum powdery mildew resistance in a Central American tomato accession is caused by loss of MLO function. Mol. Plant Microbe. Interact. 21, 30-39.   DOI
3 Berg, J. A., Appiano, M., Martinez, M. S., Hermans, F. W. K., Vriezen, W. H., Visser, R. G. F., Bai, Y. and Schouten, H. J. 2015 A transposable element insertion in the susceptibility gene CsaMLO8 results in hypocotyl resistance to powdery mildew in cucmber. BMC Plant Biol. 15, 243.   DOI
4 Büschges, R., Hollricher, K., Panstruga, R., Simons, G., Wolter, M., Frijters, A., van Daelen, R., van der Lee, T., Diergaarde, P., Groenendijk, J., Töpsch, S., Vos, P., Salamini, F. and Schulze-Lefert, P. 1997. The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88, 695-705.   DOI
5 Chen, Z., Hartmann, H. A., Wu, M. J., Friedman, E. J., Chen, J., Pulley, M., Schulze-Lefert, P., Panstruga, R. and Jones, A. M. 2006. Expression analysis of the AtMLO gene family encoding plant-specific seventransmembrane domain proteins. Plant Mol. Biol. 60, 583-597.   DOI
6 Cheng, H., Kun, W., Liu, D., Su, Y. and He, Q. 2012. Molecular cloning and expression analysis of CmMlo1 in melon. Mol. Biol. Rep. 39, 1903-1907.   DOI
7 Consonni, C., Humphry, M. E., Hartmann, H. A., Livaja, M., Durner, J., Westphal, L., Vogel, J., Lipka, V., Kemmerling, B., Schulze-Lefert, P., Somerville, S. C. and Panstruga, R. 2006. Conserved requirement for a plant host cell protein in powdery mildew pathogenesis. Nat. Genet. 386, 716-720.
8 Deshmukh, R., Singh, V. K. and Singh, B. D. 2014. Comparative phylogenetic analysis of genome-wideMlogene family members from Glycine max and Arabidopsis thaliana. Mol. Genet. Genomics 289, 345-359.   DOI
9 Devoto, A., Piffanelli, P., Nilsson, I., Wallin, E., Panstruga, R., Von Heijne, G., Panstruga, R., Von Heijne, G. and Schulze-Lefert, P. 1999. Topology, subcellular localization, and sequence diversity of the Mlo family in plants. J. Biol. Chem. 274, 34993-35004.   DOI
10 Devoto, A., Hartmann, H. A., Piffanelli, P., Elliott, C., Simmons, C., Taramino, G., Goh, C. S., Cohen, F. E., Emerson, B. C., Schulze-Lefert, P. and Panstruga, R. 2003. Molecular phylogeny and evolution of the plant-specific seven-transmembrane MLO family. J. Mol. Evol. 56, 77-88.   DOI
11 Elliott, C., Muller, J, Miklis, M., Bhat, R. A., Schulze-Lefert, P. and Panstruga, R. 2005. Conserved extracellular cysteine residues and cytoplasmic loop-loop interplay are required for functionality of the heptahelical MLO protein. Biochem. J. 385, 243-254.   DOI
12 Feechan, A., Jermakow, A. M., Torregrosa, L., Panstruga, R. and Dry, I. B. 2008. Identification of grapevine MLO gene candidates involved in susceptibility to powdery mildew. Funct. Plant Biol. 35, 1255-1266.   DOI
13 Feechan, A., Jermakow, A. M. and Dry, I. B. 2009. Grapevine MLO candidates required for powdery mildew pathogenicity. Plant Signal Behav. 4, 522-523.   DOI
14 Fita, A., Bowen, H. C., Hayden, R. M., Nuez, F., Pico, B. and Hammond, J. P. 2012. Diversity in Expression of Phosphorus (P) Responsive Genes in Cucumismelo L. PLoS One 7, e35387.   DOI
15 Garcia-Mas, J., Benjak, A., Sanseverino, W., Bourgeois, M., Mir, G. and Gonzalez, V. M. 2012. The genome of melon (Cucumis melo L.). Proc. Natl. Acad. Sci. USA 109, 11872-11877.   DOI
16 Glawe, D. A. 2008. The powdery mildews: a review of the world most familiar (yet poorly known) plant pathogens. Annu. Rev. Phytopathol. 46, 27-51.   DOI
17 Jarvis, W. R., Gubler, W. D. and Grove, G. G. 2002. Epidemiology of powdery mildews in agricultural pathosystems. In: Bélanger RR, Bushnell WR, Dik AJ, Carver TLW, eds. The Powdery Mildews: A Comprehensive Treatise. St Paul MN, USA: APS Press 169-99.
18 Glazebrook, J. 1999. Genes controlling expression of defense responses in Arabidopsis. Curr. Opin. Plant Biol. 2, 280-286.   DOI
19 Glazebrook, J. 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43, 205-227.   DOI
20 Hückelhoven, R., Fodor, J., Preis, C. and Kogel, K. H. 1999. Hypersensitive cell death and papilla formation in barley attacked by the powdery mildew fungus are associated with hydrogen peroxide but not with salicylic acid accumulation. Plant Physiol. 119, 1251-1260.   DOI
21 Kim, M. C., Lee, S. H., Kim, J. K., Chun, H. J., Choi, M. S., Chung, W. S., Moon, B. C., Kang, C. H., Park, C. Y., Yoo, J. H., Kang, Y. H., Koo, S. C., Koo, Y. D., Jung, J. C., Kim, S. T., Schulze-Lefert, P., Lee, S. Y. and Cho, M. J. 2002a. MLO, a modulator of plant defense and cell death, is a novel calmodulin-binding protein. J. Biol. Chem. 277, 19304-19314.   DOI
22 Kim, M. C., Panstruga, R., Elliott, C., Müller, J., Devoto, A., Yoon, H. W., Park, H. C., Cho, M. J. and Schulze-Lefert, P. 2002b. Calmodulin interacts with MLO protein to regulate defense against mildew in barley. Nature 416, 447-450.   DOI
23 Kim, D. S. and Hwang, B. K. 2012. The pepper MLO gene, CaMLO2, is involved in the susceptibility cell-death response and bacterial and oomycete proliferation. Plant J. 72, 843-855.   DOI
24 Livak, K. J. and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2 −∆∆ct method. Methods 25, 402-408.   DOI
25 Kumar, J., Hückelhoven, R., Beckhove, U., Nagarajan, S. and Kogel, K. H. 2001. A compromised Mlo pathway affects the response of barley to the necrotrophic fungus Bipolarissorokiniana(teleomorph: Cochliobolussativus) and its toxins. Phytopathology 91, 127-133.   DOI
26 Lebeda, A. and Sedláková, B. 2006. Identification and survey of cucurbit powderymildew races in Czech populations. Proceedings of Cucurbitaceae, Asheville, North Carolina, USA, 17-21 September 2006. pp 444-452.
27 Liu, Q. and Zhu, H. 2008. Molecular evolution of the MLO gene family in Oryza sativa and their functional divergence. Gene 409, 1-10.   DOI
28 McDonald, B. A. and Linde, C. 2002. Pathogen population genetics, evolutionary potential and durable resistance. Annu. Rev. Phytopathol. 40, 349-379.   DOI
29 Miazzi, M., Laguardia, C. and Faretra, F. 2011. Variation in Podosphaera xanthii on cucurbits in southern Italy. J. Phytopathol. 159, 538-545.   DOI
30 Miklis, M., Consonni, C., Bhat, R. A., Lipka, V., Schulze-Lefert, P. and Panstruga, R. 2007. Barley MLO modulates actin-dependent and actin-independent antifungal defense pathways at the cell periphery. Plant Physiol. 144, 1132-1143.   DOI
31 Nicholas, K. B. and Nicholas, H. B. J. 1997. GeneDoc: a tool for editing and annotating multiple sequence alignments. http://www.psc.edu/biomed/genedoc.
32 Orz´aez, M., Salgado, J., Gimenez-Giner, A., Perez-Paya, E. and Mingarro, I. 2004. Influence of proline residues in transmembrane helix packing. J. Mol. Biol. 335, 631-640.   DOI
33 Pessina, S., Pavan, S., Catalano, D., Gallotta, A., Visser, R. G. F., Bai, Y., Malnoy, M. and Schouten, H. J. 2014. Characterization of the MLO gene family in Rosaceae and gene expression analysis in Malus domestica. BMC Genomics 15, 618.   DOI
34 Panstruga, R. 2003. Establishing compatibility between plants and obligate biotrophic pathogens. Curr. Opin. Plant Biol. 6, 320-326.   DOI
35 Panstruga, R. 2005b. Serpentine plant MLO proteins as entry portals for powdery mildew fungi. Biochem. Soc. Transact. 33, 389-392.   DOI
36 Perchepied, L., Bardin, M., Dogimont, C. and Pitrat, M. 2005. Relationship between loci conferring downy mildew and powdery mildew resistance in melon assessed by quantitative trait loci mapping. Phytopathology 95, 556-565.   DOI
37 Piffanelli, P., Zhou, F. S., Casais, C., Orme, J., Jarosch, B., Schaffrath, U., Collins, N. C., Panstruga, R. and Schulze-Lefert, P. 2002. The barley MLO modulator of defense and cell death is responsive to biotic and abiotic stress stimuli. Plant Physiol. 129, 1076-1085.   DOI
38 Reddy, V. S., Ali, G. S. and Reddy, A. S. N. 2003. Characterization of a pathogen-induced calmodulin-binding protein: mapping of four Ca2+ dependent calmodulin-binding domains. Plant Mol. Biol. 52, 143-159.   DOI
39 Reinbothe, C., Springer, A., Samol, I. and Reinbothe, S. 2009. Plant oxylipins: role of jasmonic acid during programmed cell death, defence and leaf senescence. FEBS J. 276, 4666-4681.   DOI
40 Reinstädler, A., Müller, J., Czembor, J. H., Piffanelli, P. and Panstruga, R. 2010. Novel induced mlo mutant alleles in combination with site-directed mutagenesis reveal functionally important domains in the heptahelical barley Mlo protein. BMC Plant Biol. 10, 31.   DOI
41 Wang, X., Ma, Q., Dou, L., Liu, Z., Peng, R. and Yu, S. 2016. Genome-wide characterization and comparative analysis of the MLO gene family in cotton. Plant Physiol. Biochem. 103, 106-119.   DOI
42 Schulze-Lefert, P. and Vogel, J. 2000. Closing the ranks to attack by powdery mildew. Trends Plant Sci. 5, 343-348.   DOI
43 Schouten, H. J., Krauskopf, J., Visser, R. G. F. and Bai, Y. 2014. Identification of candidate genes required for susceptibility to powdery or downy mildew in cucumber. Euphytica 200, 475-486.   DOI
44 Thomma, B. P., Penninckx, I. A., Broekaert, W. F. and Cammue, B. P. 2001. The complexity of disease signaling in Arabidopsis. Curr. Opin. Immunol. 13, 63-68.   DOI
45 Winterhagen, P., Howard, S. F., Qiu, W. and Kovács, L. G. 2008. Transcriptional up-regulation of grapevine MLO genes in response to powdery mildew infection. Am. J. Enol. Vit. 59, 2.
46 Wolter, M., Hollricher, K., Salamini, F. and Schulze-Lefert, P. 1993. The mlo resistance alleles to powdery mildew infection in barley trigger a developmentally controlled defense mimic phenotype. Mol. Gen. Genet. 239, 122-128.
47 Zheng, Z., Nonomura, T., Bóka, K., Matsuda, Y., Visser, R. G. F., Toyoda, H. and Bai, Y. 2013. Detection and quantification of Leveillula taurica growth in pepper leaves. Phytopathology 103, 6.