• 제목/요약/키워드: Cubic structure

검색결과 648건 처리시간 0.027초

고분자전해질형 연료전지에서 산소극을 위한 백금-크롬-니켈 합금촉매의 전극특성 (Electrode Performance of Pt-Cr-Ni Alloy Catalysts for Oxygen Electrode in Polymer Electrolyte Fuel Cell)

  • 심중표;이홍기
    • 한국재료학회지
    • /
    • 제10권12호
    • /
    • pp.831-837
    • /
    • 2000
  • 고분자전해질형 연료전지에서 촉매의 활성을 증가시키기 위하여 기존에 사용되고 있는 백금과 전이금속인 chromium, nickel과의 합금을 제조하였다. XRD를 이용하여 합금의 구조가 $33^{\circ}$에서 superlattice line을 가지고 있는 것으로 보아 face centered cubic 구조를 가진 ordered alloy로 이루어졌다는 것을 알 수 있었다. 열처리 온도가 증가할수록 합금의 입자 크기는 증가하였으며, 결정 격자 상수는 감소하였다. 전지성능테스트, cyclic voltammogram 등을 통하여 mass activity, specific activity, Tafel slope, 개회로 전압을 측정한 결과, 합금촉매의 활성이 순수한 백금촉매보다 크게 향상되었음을 알 수 있었다.

  • PDF

Structural and Optical Properties of Yellow-Emitting CaGd2ZrSc(AlO4)3:Ce3+ Phosphor for Solid-State Lighting

  • Kim, Yoon Hwa;Kim, Bo Young;Viswanath, Noolu S.M.;Arunkumar, Paulraj;Im, Won Bin
    • 한국세라믹학회지
    • /
    • 제54권5호
    • /
    • pp.422-428
    • /
    • 2017
  • Single-phase yellow phosphor, $CaGd_{2-x}ZrSc(AlO_4)_3:xCe^{3+}$ ($CGZSA:Ce^{3+}$), possessing cubic symmetry with varied $Ce^{3+}$ concentrations, was synthesized using the solid-state reaction method. The samples were characterized using X-ray diffraction (XRD), excitation spectra, emission spectra, thermal quenching, and decay curves. The cubic phase of $CGZSA:Ce^{3+}$ phosphor was confirmed via XRD analysis. The photoluminescence spectra of $CGZSA:Ce^{3+}$ phosphor demonstrated that the phosphor could be excited at the wavelength of 440 nm; a broad yellow emission band was centered at 541 nm. These results indicate that the phosphors are adequately excited by blue light and have the potential to function as yellow-emitting phosphors for applications in white light-emitting diodes.

Preparation and Luminescence of Europium-doped Yttrium Oxide Thin Films

  • Chung, Myun Hwa;Kim, Joo Han
    • Applied Science and Convergence Technology
    • /
    • 제26권2호
    • /
    • pp.26-29
    • /
    • 2017
  • Thin films of europium-doped yttrium oxide ($Y_2O_3$:Eu) were prepared on Si (100) substrates by using a radio frequency (RF) magnetron sputtering. After the deposition, the films were annealed at $1000^{\circ}C$ in an air ambient for 1 hour. X-ray diffraction analysis revealed that the $Y_2O_3$:Eu films had a polycrystalline cubic ${\alpha}-Y_2O_3$ structure. The as-deposited films showed no photoluminescence (PL), which was due to poor crystalline quality of the films. The crystallinity of the $Y_2O_3$:Eu films was significantly improved by annealing. The strong red PL emission was observed from the annealed $Y_2O_3$:Eu films and the highest intensity peak was centered at around 613 nm. This emission peak originated from the $^5D_0{\rightarrow}^7F_2$ transition of the trivalent Eu ions occupying the $C_2$ sites in the cubic ${\alpha}-Y_2O_3$ lattice. The broad PL excitation band was observed at wavelengths below 280 nm, which was attributed to the charge transfer transition of the trivalent Eu ion.

Microstructural evolution of tantalum nitride thin films synthesized by inductively coupled plasma sputtering

  • Sung-Il Baik;Young-Woon Kim
    • Applied Microscopy
    • /
    • 제50권
    • /
    • pp.7.1-7.10
    • /
    • 2020
  • Tantalum nitride (TaNx) thin films were grown utilizing an inductively coupled plasma (ICP) assisted direct current (DC) sputtering, and 20-100% improved microhardness values were obtained. The detailed microstructural changes of the TaNx films were characterized utilizing transmission electron microscopy (TEM), as a function of nitrogen gas fraction and ICP power. As nitrogen gas fraction increases from 0.05 to 0.15, the TaNx phase evolves from body-centered-cubic (b.c.c.) TaN0.1, to face-centered-cubic (f.c.c.) δ-TaN, to hexagonal-close-packing (h.c.p.) ε-TaN phase. By increasing ICP power from 100 W to 400 W, the f.c.c. δ- TaN phase becomes the main phase in all nitrogen fractions investigated. The higher ICP power enhances the mobility of Ta and N ions, which stabilizes the δ-TaN phase like a high-temperature regime and removes the micro-voids between the columnar grains in the TaNx film. The dense δ-TaN structure with reduced columnar grains and micro-voids increases the strength of the TaNx film.

MODIFICATION OF INITIALLY GROWN BN LAYERS BY POST-N$^{+}$ IMPLANTATION

  • Byon, E-S.;Lee, S-H.;Lee, S-R.;Lee, K-H.;Tian, J.;Youn, J-H.;Sung, C.
    • 한국표면공학회지
    • /
    • 제32권3호
    • /
    • pp.351-355
    • /
    • 1999
  • BN films with a high content of cubic phase has been deposited by a variety of techniques. It is well known that c-BN films grow with a unique microstructure consisting of $sp^2$ and $sp^{3-}$ bonded layers. Because of existence of the initially grown $sp^{2-}$ /bonded layer, BN films are not adhesive to the substrates. In this study, post-N$^{+ }$ / implantation was applied to improve the adhesion of the films. A Monte Carlo program TAMIX was used to simulate this modification process. The simulation showed nitrogen concentration profile at $1200\AA$ in depth in case of 50keV -implantation energy. FTIR spectra of the $N^{+}$ implanted specimens demonstrated a strong change of absorption band at 1380 cm$^{ -1 }$The films were also investigated by HRTEM. From these results, it is concluded that the post ion implantation could be an effective technique which improves the adhesion between BN film and substrate.

  • PDF

섭동론에 의한 간단한 쿨롱 액체의 구조 및 열역학적 성질 (Structure and Thermodynamic Properties of Simple Coulomb Liquids Using Perturbation Theory)

  • 신동영;이재원;이태규
    • 대한화학회지
    • /
    • 제35권4호
    • /
    • pp.308-315
    • /
    • 1991
  • 단순한 쿨롱액체들의 채심입방정계의 구조와 열역학적 성질들은 일성분 플라즈마에 대한 섭동론으로부터 계산된다. 섭동론(PT)과 Monte Cario(MC) 데이타의 비교는 좋은 일치를 보인다. 강체구 섭동론은 일성분 플라즈마 같은 먼 거리의 인력계에 적절하다. PT와 MC 데이타에 대한 동경 분포함수(g(r))와 구조인자(S(q))의 비교에서 일치를 보인다. 따라서 섭동론은 쿨롱액체의 성질 및 구조를 설명하는데 유용한 방법이다.

  • PDF

Crystal Structure of an Acetylene Sorption Complex of Dehydrated Fully Mn(II)-Exchanged Zeolite X

  • 배명남;김양
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권10호
    • /
    • pp.1095-1099
    • /
    • 1998
  • The crystal structure of an acetylene sorption complex of dehydrated fully Mn(Ⅱ)-exchanged zeolite X, Mn46Si100Al92O384·30C2H2 (a=24.705(3) Å) has been determined by single-crystal X-ray diffraction techniques. The structure was solved and refined in the cubic space group Fd3 at 21(l) ℃. The complex was prepared by dehydration at 380 ℃ and 2 x 10-6 Torr for 2 days, followed by exposure to 300 Torr of acetylene gas for 2 h at 24 ℃. The structure was refined to the final error indices, R1=0.060 and R2=0.054 with 383 reflections for which I > 3σ(Ⅰ). In the structure, Mn2+ ions are located at two different crystallographic sites; sixteen Mn2+ ions at site I are located at the centers of the double six rings and thirty Mn2+ ions are found at site Ⅱ in the supercage, respectively. Each of these latter Mn2+ ions is recessed ca. 0.385(2) Å into the supercage from its three-oxygen plane. Thirty acetylene molecules are sorbed per unit cell. Each Mn2+ ion at site Ⅱ lies on a threefold axis in the supercage of the unit cell, close to three equivalent trigonally arranged zeolite framework oxygen atoms (Mn(Ⅱ)-O=2.135(9) Å) and symmetrically to both carbon atoms of a C2H2 molecules. At these latter distances, the Mn(Ⅱ)-C interactions are weak (Mn(Ⅱ)-C=2.70(5) Å), probably resulting from electrostatic attractions between the divalent cations and the polarizable π-electron density of the acetylene molecules.

실시간 XRD와 TEM을 이용한 MAPbI3의 온도 변화에 따른 구조 분석 (Investigation of Electron Thermally Induced Phase Transition in MAPbI3 Perovskite Solar Cells Using In-Situ XRD and TEM)

  • 최진석;엄지호;윤순길
    • 한국전기전자재료학회논문지
    • /
    • 제32권1호
    • /
    • pp.64-69
    • /
    • 2019
  • Methylammonium lead triiodide ($MAPbI_3$)-based perovskite solar cells potentially have potential advantages such as high efficiency and low-cost manufacturing procedures. However, $MAPbI_3$ is structurally unstable and has low phase-change temperatures ($30^{\circ}C$ and $130^{\circ}C$); it is necessary to solve these problems. We investigated the crystal structure and phase separation using real-time temperature-change X-ray diffraction, transmission electron microscopy, and electron energy loss spectroscopy. $MAPbI_3$ has a tetragonal structure, and at about $35^{\circ}C$ the c-axis contracts, transforming $MAPbI_3$ into the related cubic crystal structure. In addition, at $130^{\circ}C$, phase separation occurs in which $CH_3NH_2$ and HI at the center of the unit cell of the perovskite structure are extracted by gas, leavingand only $PbI_2$ of the three-component structure, is produced as the final solid product.

Compound damping cable system for vibration control of high-rise structures

  • Yu, Jianda;Feng, Zhouquan;Zhang, Xiangqi;Sun, Hongxin;Peng, Jian
    • Smart Structures and Systems
    • /
    • 제29권4호
    • /
    • pp.641-652
    • /
    • 2022
  • High-rise structures prone to large vibrations under the action of strong winds, resulting in fatigue damage of the structural components and the foundation. A novel compound damping cable system (CDCS) is proposed to suppress the excessive vibrations. CDCS uses tailored double cable system with increased tensile stiffness as the connecting device, and makes use of the relative motion between the high-rise structure and the ground to drive the damper to move back-and-forth, dissipating the vibration mechanical energy of the high-rise structure so as to decaying the excessive vibration. Firstly, a third-order differential equation for the free vibration of high-rise structure with CDCS is established, and its closed form solution is obtained by the root formulas of cubic equation (Shengjin's formulas). Secondly, the analytical solution is validated by a laboratory model experiment. Thirdly, parametric analysis is conducted to investigate how the parameters affect the vibration control performance. Finally, the dynamic responses of the high-rise structure with CDCS under harmonic and stochastic excitations are calculated and its vibration mitigation performance is further evaluated. The results show that the CDCS can provide a large equivalent additional damping ratio for the vibrating structures, thus suppressing the excessive vibration effectively. It is anticipated that the CDCS can be used as a good alternative energy dissipation system for vibration control of high-rise structures.

$Mg_{0.16}Zn_{0.84}Te:Co $단결정 성장과 광흡수 특성 (Crystal growth and optical absorption of $Mg_{0.16}Zn_{0.84}Te:Co $ single crystal)

  • 정상조
    • 한국결정성장학회지
    • /
    • 제7권4호
    • /
    • pp.548-554
    • /
    • 1997
  • 수직 Bridgman방법으로 $Mg_{0.18}Zn_{0.84}$Te:Co(Co:0.01 mole%)단결정을 성장시켰다. 성장된 단결정의 결정구조와 광흡수 spectra를 연구하였다. X 선 회절무늬로부터 성장된 단결정의 구조는 cubic구조이었고 격자상수 a=6.1422 $\AA$이었다. 광흡수 측정결과 $Co^{2+}$ 이온에 기인된 $A-band:^4A_2(^4F){\to}^4T_2(^4F),\; B-band:^4A_2(^4F){\to}^4T_1(^4F), C- band:^4A_2(^4F){\to}^4T_1(^4P)$의 intracenter transition과, 흡수단 근처의 charge transfer에 의한 photoionization transition에 관계된 D-band를 550-770 nm의 파장영역에서 관측하였다. 또한 결정장 이론에 의해 결정매개변수(Dq)와 Racah parameter(B)를 결정하였다.

  • PDF