• Title/Summary/Keyword: Cubic Si

Search Result 179, Processing Time 0.038 seconds

Crystal growth of 3C-SiC on Si(100) Wafers (Si(100)기판상에 3C-SiC결정성장)

  • Chung, Yun-Sik;Chung, Gwiy-Sang;Nishino, Shigehiro
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1593-1595
    • /
    • 2002
  • Single crystal 3C-SiC(cubic silicon carbide) thin-films were deposited on Si(100) wafers up to a thickness of 4.3 ${\mu}m$ by APCVD method using HMDS(hexamethyildisilane) at $1350^{\circ}C$. The HMDS flow rate was 0.5 sccm and the carrier gas flow rate was 2.5 slm. The HMDS flow rate was important to get a mirror-like crystal surface. The growth rate of the 3C-SiC films was 4.3 ${\mu}m/hr$. The 3C-SiC epitaxial films grown on Si(100) were characterized by XRD, AFM, RHEED, XPS and raman scattering, respectively. The 3C-SiC distinct phonons of TO(transverse optical) near 796 $cm^{-1}$ and LO(longitudinal optical) near $974{\pm}1cm^{-1}$ were recorded by raman scattering measurement. The hetero-epitaxially grown films were identified as the single crystal 3C-SiC phase by XRD spectra($2{\theta}=41.5^{\circ}$).

  • PDF

Influence of Carbonization Conditions in Hydrogen Poor Ambient Conditions on the Growth of 3C-SiC Thin Films by Chemical Vapor Deposition with a Single-Source Precursor of Hexamethyldisilane

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.175-180
    • /
    • 2013
  • This paper describes the characteristics of cubic silicon carbide (3C-SiC) films grown on a carbonized Si(100) substrate, using hexamethyldisilane (HMDS, $Si_2(CH_3)_6$) as a safe organosilane single precursor in a nonflammable $H_2$/Ar ($H_2$ in Ar) mixture carrier gas by atmospheric pressure chemical vapor deposition (APCVD) at $1280^{\circ}C$. The growth process was performed under various conditions to determine the optimized growth and carbonization condition. Under the optimized condition, grown film has a single crystalline 3C-SiC with well crystallinity, small voids, low residual stress, low carrier concentration, and low RMS. Therefore, the 3C-SiC film on the carbonized Si (100) substrate is suitable to power device and MEMS fields.

A study on the mirror like machining of Al-Si alloy for extraction of Si particle (Al-Si합금의 Si석출 경면가공에 관한 연구)

  • 이은상;김정두
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.12
    • /
    • pp.2279-2286
    • /
    • 1992
  • A hypereutectic Aluminum-Silicon Alloy is widely used in the parts of autombile because of high-resistance and good strength. In this study, the cutting of a hypereutectic Al-Si alloy (A390) for extraction of Si particle was experimentally investigated. By proper selection of cutting tool materials and optimization of cutting conditions, economical machining of this alloy is achieved. The surface roughness relates closely with the feed rate and cutting speed.

Growth of single crystalline 3C-SiC thin films for high power semiconductor devices (고전력 반도체 소자용 단결정 3C-SiC 박막성장)

  • Shim, Jaen-Chul;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.6-6
    • /
    • 2010
  • This paper describes that single crystal cubic silicon (3C-SiC) films have been deposited on carbonized Si(100) substrate using hexamethyldisilane(HMDS, $Si_2(CH_3)_6$) as a safe organosilane single-source precursor and a nonflammable mixture of Ar and $H_2$ gas as the carrier gas by APCVD at $1280^{\circ}C$. The 3C-SiC film had a very good crystal quality without defects due to viods, a very low residual stress.

  • PDF

A Study on the Preparation of CdS Doped $SiO_2$ Glass Coating Films by Sol-Gel Method (졸-겔법에 의한 CdS 분산 $SiO_2$ Glass 코팅막의 제조에 관한 연구)

  • 박한수;김경문;문종수
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.11
    • /
    • pp.897-904
    • /
    • 1993
  • CdS doped SiO2 glass coating films which are good candidates for the nonlinear optical materials were prepared by the Sol-Gel method. TEOS, C2H5OH, H2O and HCl were used as starting materials to obtain SiO2 matrix solutions. Then Cd(NO3)2.2H2O and CS(NH2)2 were dissolved into the SiO2 matrix solutions. Coating was performed several times in order to increase the thickness of coated film by the dip-coating method. Then heat treatments were carried out to control the size of CdS microcrystals doped in SiO2 glass matrix with respect to temperatures and times. CdS-doped SiO2 transparent coating films were successfully obtained. CdS crystals were changed from cubic to hexagonal type about $600^{\circ}C$.

  • PDF

Characterization of SiC nanowire synthesize by Thermal CVD

  • Jeong, Min-Uk;Kim, Min-Guk;Song, U-Seok;Jeong, Dae-Seong;Choe, Won-Cheol;Park, Jong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.74-74
    • /
    • 2010
  • One-dimensional nanosturctures such as nanowires and nanotube have been mainly proposed as important components of nano-electronic devices and are expected to play an integral part in design and construction of these devices. Silicon carbide(SiC) is one of a promising wide bandgap semiconductor that exhibits extraordinary properties, such as higher thermal conductivity, mechanical and chemical stability than silicon. Therefore, the synthesis of SiC-based nanowires(NWs) open a possibility for developing a potential application in nano-electronic devices which have to work under harsh environment. In this study, one-dimensional nanowires(NWs) of cubic phase silicon carbide($\beta$-SiC) were efficiently produced by thermal chemical vapor deposition(T-CVD) synthesis of mixtures containing Si powders and hydrocarbon in a alumina boat about $T\;=\;1400^{\circ}C$ SEM images are shown that the temperature below $1300^{\circ}C$ is not enough to synthesis the SiC NWs due to insufficient thermal energy for melting of Si Powder and decomposition of methane gas. However, the SiC NWs are produced over $1300^{\circ}C$ and the most efficient temperature for growth of SiC NWs is about $1400^{\circ}C$ with an average diameter range between 50 ~ 150 nm. Raman spectra revealed the crystal form of the synthesized SiC NWs is a cubic phase. Two distinct peaks at 795 and $970\;cm^{-1}$ over $1400^{\circ}C$ represent the TO and LO mode of the bulk $\beta$-SiC, respectively. In XRD spectra, this result was also verified with the strongest (111) peaks at $2{\theta}=35.7^{\circ}$, which is very close to (111) plane peak position of 3C-SiC over $1400 ^{\circ}C$ TEM images are represented to two typical $\beta$-SiC NWs structures. One is shown the defect-free $\beta$-SiC nanowire with a (111) interplane distance with 0.25 nm, and the other is the stacking-faulted $\beta$-SiC nanowire. Two SiC nanowires are covered with $SiO_2$ layer with a thickness of less 2 nm. Moreover, by changing the flow rate of methane gas, the 300 sccm is the optimal condition for synthesis of a large amount of $\beta$-SiC NWs.

  • PDF

Properties of Single Crystalline 3C-SiC Thin Films Grown with Several Carbonization Conditions (여러 탄화조건에 따라 성장된 단결정 3C-SiC 박막의 특성)

  • Shim, Jae-Cheol;Chung, Gwiy-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.11
    • /
    • pp.837-842
    • /
    • 2010
  • This paper describes the crystallinity, growth rate, and surface morphology of single crystalline 3C-SiC (cubic silicon carbide) thin films grown with several carbonization conditions such as temperature, $C_3H_8$ flow rate, time. In case of carbonization, an increase in the carbonization temperature caused a increase in the size and numbers of unsealed void (big black spot) which decrease the crystallinity. In addition, optimal $C_3H_8$ flow rate made carbonization layer form well and prevented the formation of voids. Also, after a period of time, the growth of carbonization layer did not increase no more. The single crystalline 3C-SiC thin films on optimal carbonized Si substrate showed an improvement on the crystallinity, the growth rate, the roughness, and the carrier concentration.

Improvement of Glass Forming Ability of Ni-Zr-Ti Alloys by Addition of Si and Sn

  • Lee, Jin-Kyu;Kim, Won-Tae;Kim, Do-Hyang
    • Journal of Korea Foundry Society
    • /
    • v.23 no.5
    • /
    • pp.286-290
    • /
    • 2003
  • 본 연구에서는 Ni-Zr-Ti의 3원계 합금을 기본으로 하여, Si 및 Sn 등의 원소를 첨가하여 Ni-rich 영역에서 벌크 비정질 합금을 제조하였다. $Ni_{59}Zr_{20}Ti_{16}Si_2Sn_3$ 조성의 합금에서 injection casting에 의하여 약 58 K의 과냉각액상영역을 가지고 있는 직경 3 mm의 벌크 비정질 시편을 제조하였다. 이러한 우수한 비정질 형성능은 액상온도의 저하로 인해 낮은 온도까지 액상이 쉽게 과냉되기 때문인 것으로 사료된다. $Ni_{59}Zr_{20}Ti_{16}Si_5$ 합금은 두 단계에 걸쳐 결정화가 일어나는 반면, $Ni_{59}Zr_{20}Ti_{16}Si_2Sn_3$ 합금은 단일 단계에 의해 orthorhombic $Ni_{10}{(Zr,Ti)}_7$ 결정상과 cubic NiTi 결정상으로 결정화가 일어난다. 벌크 비정질 $Ni_{59}Zr_{20}Ti_{16}Si_2Sn_3$ 합금의 경우 압충강도는 2.7 GPa, 연신율은 약 2% 정도의 값을 가진다.

Chemical Vapor Deposition of Silicon Carbide Thin Films Using the Single Precursor 1,3-Disilabutane

  • Lee, Kyung-Won;Boo, Jin-Hyo;Yu, Kyu-Sang;Kim, Yunsoo
    • The Korean Journal of Ceramics
    • /
    • v.3 no.3
    • /
    • pp.177-181
    • /
    • 1997
  • Epitaxial films of cubic silicon carbide (3C-SiC, $\beta$-SiC) have been grown on Si(001) and Si(111) substrates by high vacuum chemical vapor deposition using the single precursor 1,3-disilabutane, $H_3SiCH_2SiH_2CH_3$, at temperatures 900~$100^{\circ}C$. The advantage of using the single precursor over the covnentional chemical vapor deposition is evident in that the source chemical is safe to handle, carbonization of the substrates is not necessary, accurate stoichiometry of the silicon carbide films is easily achieved, and the deposition temperature is much lowered. The films were characterized by XPS, XRD, SEM, RHEED, RBS, AES, and TED.

  • PDF

Effects hydrogen ambients on the characteristics of poly-crystalline 3C-SiC thin films (수소 분위기가 다결정 3C-SiC 박막의 특성에 미치는 영향)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.134-135
    • /
    • 2007
  • Growth of cubic SiC has been carried out on oxided Si substrate using atmospheric pressure chemical vapor deposition (APCVD). Hexamethyldisilane (HMDS) was used as the single precursor and nonflammable mixture of Ar and $H_2$ was used as carrier gas. Epitaxial growth had performed depositions under the various $H_2$ conditions which were adjusted from 0 to 100 seem. The effects of $H_2$ was characterized by surface roughness, thickness uniformity, films quality and elastic modulus. Thickness uniformity and films quality were performed by SEM. Surface roughness and elastic modulus were investigated by AFM and Nano-indentor, respectively. According to the $H_2$ flow rate, Poly 3C-SiC thin film quality was improved not only physical but also mechanical properties.

  • PDF