Browse > Article
http://dx.doi.org/10.4313/JKEM.2010.23.11.837

Properties of Single Crystalline 3C-SiC Thin Films Grown with Several Carbonization Conditions  

Shim, Jae-Cheol (School of Electrical Engineering, Ulsan University)
Chung, Gwiy-Sang (School of Electrical Engineering, Ulsan University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.23, no.11, 2010 , pp. 837-842 More about this Journal
Abstract
This paper describes the crystallinity, growth rate, and surface morphology of single crystalline 3C-SiC (cubic silicon carbide) thin films grown with several carbonization conditions such as temperature, $C_3H_8$ flow rate, time. In case of carbonization, an increase in the carbonization temperature caused a increase in the size and numbers of unsealed void (big black spot) which decrease the crystallinity. In addition, optimal $C_3H_8$ flow rate made carbonization layer form well and prevented the formation of voids. Also, after a period of time, the growth of carbonization layer did not increase no more. The single crystalline 3C-SiC thin films on optimal carbonized Si substrate showed an improvement on the crystallinity, the growth rate, the roughness, and the carrier concentration.
Keywords
Single crystalline 3C-SiC; Carbonization; Void;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. B. Casady, and R. W. Johnson, Solid-State Electron., 39, 1409 (1996).   DOI
2 A. Elasser, and P. Chow, Proc. IEEE, 90, 969 (2002).   DOI   ScienceOn
3 N. Kubo, T. Kawase, S. Asahina, N. Kanayama, H. Tsuda, A. Moritani, and K. Kitahara, Jpn. J. Appl. Phys., 43, 7654 (2004).   DOI
4 A. J. Steckl, C. Yuan, and J. P. Li, Appl. Phys. Lette., 63, 3347 (1993).   DOI
5 M. Zielinski, A. Leycuras, S. Ndiaye, and T. Chassagne, J. Appl. Phys. Lett, 89, 131906 (2006).   DOI
6 S. Nishino, J. A. Powell, and H. A. Will, Appl. Phys. Lett., 42, 460 (1983).   DOI
7 A. Severinoa, C. Frewinc, C. Bongiornoa, R. Anzalonea, S. E. Saddow, and F. La Via. Diam. Relat. Mater., 18, 1440 (2009).   DOI   ScienceOn
8 A. J. Steckl, and J. P. Li, IEEE Trans. Electron Devices., 39, 64 (1992).   DOI
9 N. Becourt, J. L. Ponthenier, A. M. Papon, and C. Jaussaud, Physica B, 185, 79 (1993).   DOI
10 Z. D. Sha, X. M. Wu, and L. J. Zhuge, Phys. Lett. A, 346, 186 (2005).   DOI
11 M. A. Capano, B. C. Kim, A. R. Smith, E. P. Kvam, S. Tsoi, and A. K. Ramdas, J. Appl. Phys., 100, 083514 (2006).   DOI
12 V. Cimalla, K. V. Karagodina, J. Pezoldt, and G. Eichhorn, Mat. sci. Eng. B, 29, 170 (1995).   DOI