• Title/Summary/Keyword: CuSn

Search Result 1,102, Processing Time 0.023 seconds

Effect of Post Solidification Cooling Condition on the Mechanical Behavior of the 0.36Mn Containing Ductile Iron (0.36Mn이 함유된 구상흑연주철의 냉각조건에 따른 기계적 거동 고찰)

  • Kim, Suck-Dong;Kim, Sung-Gyoo
    • Journal of Korea Foundry Society
    • /
    • v.41 no.4
    • /
    • pp.349-356
    • /
    • 2021
  • Effects of cooling condition after solidification on the microstructure and the mechanical properties of 0.36Mn containing ductile cast iron have been studied based on the minimized addition of Cu and Sn for vehicle component applications with better quality and cost competitiveness. Cu and Sn were selected for additional elements judging from the well-known fact of strong tendency of pearlite promotion followed by the tensile property improvement. After pouring of the Mg treated cast iron melt with various chemical compositions into the block specimens, two ways of post solidification cooling conditions were applied for comparison; both cooling in the mold and cooling in the air after dismantle at 800℃. The pearlite fraction of the mold-cooled specimens was analyzed as 27-44%, with the tensile strength and elongation of 513-568N/mm2 and 10.4-14.3%, respectively. Whilest, the air cooled specimens showed the pearlite fraction of 77~85%, with the tensile strength and elongation of 728~758N/mm2 and 3.2~6.0%, respectively. It is worthwhile to note that the remarkable improvement of both tensile strength and elongation of the ductile iron was achieved by the present air cooling condition with the minimized combined addition of Cu and Sn to the 0.36Mn containing ductile iron.

Characterization of electromechanical properties of Sn-Cu double layer stabilized GdBCO coated conductor tapes at 77 K

  • Shin, Hyung-Seop;Diaz, Mark Aangelo;Lee, Jae-Hun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.4
    • /
    • pp.26-30
    • /
    • 2017
  • The promising characteristics of 2G high-temperature superconductor (HTS) coated conductor (CC) tapes have made it possible to apply to various electrical device applications. In this study, the mechanical and electromechanical properties of Sn-Cu double layer stabilized GdBCO CC tapes have been characterized. The stress and strain tolerances of $I_c$ in GdBCO CC tapes adopting stainless steel substrate were evaluated using $I_c$-strain measurement at 77 K under both uniaxial tension and monotonic bending conditions. The results were compared to the conventional single Cu layer stabilized CC tape. As a result, the Sn-Cu double layer stabilized GdBCO CC tapes showed somehow lower or comparable electromechanical properties as compared to the Cu stabilized CC tape ones.

Mechanical Reliability Evaluation of Sn-37Pb Solder/Cu and Sn-37Pb Solder/ENIG Joints Using a High Speed Lap-shear Test (고속 전단시험법을 이용한 Sn-37Pb/Cu 와 Sn-37Pb/ENIG 솔더 접합의 기계적신뢰성 평가)

  • Jeon, Seong-Jae;Hyun, Seung-Min;Lee, Hoo-Jeong;Lee, Hak-Joo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.250-255
    • /
    • 2008
  • This study utilized a high speed lap-shear test to evaluate the mechanical behavior of Sn-37Pb/Cu and Sn-37Pb/Electroless Nickel immersion Gold under bump metallization solder joints under high speed loading and hence the drop reliability. The samples were aged for 120 h at different temperatures ($120^{\circ}C,\;150^{\circ}C,\;170^{\circ}C$) and afterward tested at different displacement rates (0.01 mm/s to 500 mm/s) to examine the effects of aging on the drop life reliability. The combination of the stress-strain graphs captured from the shear tests and identifying a fracture mode dominant in the samples for different strain rates leads us to conclude that the drop reliability of solder joints degrades as the aging temperature increases, possibly due to the role of the IMC layer. This study successfully demonstrates that the analysis based on a high speed lap-shear test could be critically used to evaluate the drop reliability of solder joints.

  • PDF

Characterization of the SnAg Electrodeposits according to the Current Density and Cross-sectional Microstructure Analysis in the Cu Pillar Solder Bump (전류밀도에 따른 SnAg 도금층의 특성 및 Cu 필라 솔더 범프의 단면 미세구조 측정)

  • Kim, Sang-Hyuk;Hong, Seong-Ki;Yim, Hyunho;Lee, Hyo-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.4
    • /
    • pp.131-135
    • /
    • 2015
  • We investigated the surface morphology and the change of Ag concentration for SnAg electrodeposits according to the current density using labmade and commercial plating solutions. The concentration of Ag in the SnAg electrodeposits decreased with increasing the current density. The Ag concentrations at the conditions of over $50mA/cm^2$ were below 3 wt% and the surface was relatively smooth. Cu pillar bump was fabricated by using SnAg electroplating, and it was reflowed at $240^{\circ}C$ for 90 sec. The cross-sectional microstructure was investigated by using EBSD measurement and it was found that the grain size of SnAg became smaller by increasing the number of reflow treatments.

The Effect of SnO2 Addition on Sintering Behaviors in a Titanium Oxide-Copper Oxide System

  • Lee, Ju-Won;Oh, Kyung-Sik;Chung, Tai-Joo;Paek, Yeong-Kyeun
    • Journal of Powder Materials
    • /
    • v.29 no.5
    • /
    • pp.357-362
    • /
    • 2022
  • The low-temperature sinterability of TiO2-CuO systems was investigated using a solid solution of SnO2. Sample powders were prepared through conventional ball milling of mixed raw powders. With the SnO2 content, the compositions of the samples were Ti1-xSnxO2-CuO(2 wt.%) in the range of x ≤ 0.08. Compared with the samples without SnO2 addition, the densification was enhanced when the samples were sintered at 900℃. The dominant mass transport mechanism seemed to be grain-boundary diffusion during heat treatment at 900℃, where active grain-boundary diffusion was responsible for the improved densification. The rapid grain growth featured by activated sintering was also obstructed with the addition of SnO2. This suggested that both CuO as an activator and SnO2 dopant synergistically reduced the sintering temperature of TiO2.

A Study on Bonding Strength and Interfacial Structure of Copper-Stainless Steel Brazed Joint(ll) (동-스테인리스 강 브레이징 접합부의 계면조직과 접합강도에 관한 연구(ll))

  • Lee, U-Cheon;Gang, Chun-Sik;Jeong, Jae-Pil;Lee, Bo-Yeong
    • Korean Journal of Materials Research
    • /
    • v.3 no.6
    • /
    • pp.668-677
    • /
    • 1993
  • The microstructural and shear tests of STS304/, STS430/ and low-C steel/Cu joints brazed using Cu-P, Cu-P-Sn(four type) and Cu-P-Sn-Ag(three type) filler metals at 1003 and 1033K for 1.2ks in Ar atomsphere were performed. Interfacial microstructures were divided into three type ; first, reaction layer contained cracks second, dispersed layer without cracks third, dispersed layer and reaction layer contained cracks. The joints composed only of dispersed layer without cracks have the high shear strength of above 40-60 MPa and result in failure in copper base metal. Low shear strength and joint failure result from the formation of reaction layer which induced cracks. The reaction layer is a Fe-P compound. This tendency of microstructure and shear strength depends on the existence and/or nonexistence of Sn in filler metals as well as Ni (and Cr) in base metals.

  • PDF

Effect of Zn content on Shear Strength of Sn-0.7Cu-xZn and OSP surface finished Joint with High Speed Shear Test (Sn-0.7Cu-xZn와 OSP 표면처리 된 기판의 솔더접합부의 고속 전단강도에 미치는 Zn의 영향)

  • Choi, Ji-Na;Bang, Jae-Oh;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.1
    • /
    • pp.45-50
    • /
    • 2017
  • We investigated effect of Zn content on shear strengh of Sn-0.7Cu-xZn and OSP surface finished solder joints. Five pastes of Sn-0.7Cu-xZn (x=0, 0.5, 1.0, 1.5, 2.0 wt.%) solders were fabricated by mixing of solder powder and flux using planatary mixer. $180{\mu}m$ diameter solder balls were formed on OSP surface finished Cu electrodes by screen print method, and the reflow process was performed. The shear strength was evaluated with two high shear speeds; 0.01 and 0.1 m/s. The thickness of the intermetallic compound(IMC) layer was decreased with increasing Zn content in Sn-0.7Cu-xZn solder. The highest shear strength was 3.47 N at the Zn content of 0.5 wt.%. As a whole, the shear strength at condition of 0.1 m/s was higher than that of 0.01 m/s because of impact stress. Fracture energies were calculated by F-x (Force-displacement) curve during high speed shear test and the tendency of fracture energy and that of shear strength were good agreement each other. Fracture took place within solder matrix at lower Zn content, and fracture occured near the interface of OSP surface finished Cu electrode and solder at higher Zn content.

Tin Oxide-modulated to Cu(OH)2 Nanowires for Efficient Electrochemical Reduction of CO2 to HCOOH and CO (SnO2/Cu(OH)2 Nanowires 전극을 이용한 전기화학적 이산화탄소 환원 특성)

  • Chaewon Seong;Hyojung Bae;Sea Cho;Jiwon Heo;Eun Mi Han;Jun-Seok Ha
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.4
    • /
    • pp.91-97
    • /
    • 2023
  • Electrochemical (EC) CO2 reduction is a promising method to convert CO2 into valuable hydrocarbon fuels and chemicals ecofriendly. Here, we report on a facile method to synthesize surface-controlled SnO2/Cu(OH)2 nanowires (NWs) and its EC reduction of CO2 to HCOOH and CO. The SnO2/Cu(OH)2 NWs (-16 mA/cm2) showed superior electrochemical performance compared to Cu(OH)2 NWs (-6 mA/cm2) at -1.0 V (vs. RHE). SnO2/Cu(OH)2 NWs showed the maximum Faradaic efficiency for conversion to HCOOH (58.01 %) and CO (29.72 %). The optimized catalyst exhibits a high C1 Faradaic efficiency stable electrolysis for 2 h in a KHCO3 electrolyte. This study facilitates the potential for the EC reduction of CO2 to chemical fuels.

The Effects of UBM and SnAgCu Solder on Drop Impact Reliability of Wafer Level Package

  • Kim, Hyun-Ho;Kim, Do-Hyung;Kim, Jong-Bin;Kim, Hee-Jin;Ahn, Jae-Ung;Kang, In-Soo;Lee, Jun-Kyu;Ahn, Hyo-Sok;Kim, Sung-Dong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.3
    • /
    • pp.65-69
    • /
    • 2010
  • In this study, we investigated the effects of UBM(Under Bump Metallization) and solder composition on the drop impact reliability of wafer level packaging. Fan-in type WLP chips were prepared with different solder ball composition (Sn3.0Ag0.5Cu, and Sn1.0Ag0.5Cu) and UBM (Cu 10 ${\mu}m$, Cu 5 ${\mu}m$\Ni 3 ${\mu}m$). Drop test was performed up to 200 cycles with 1500G acceleration according to JESD22-B111. Cu\Ni UBM showed better drop performance than Cu UBM, which could be attributed to suppression of IMC formation by Ni diffusion barrier. SAC105 was slightly better than SAC305 in terms of MTTF. Drop failure occurred at board side for Cu UBM and chip side for Cu\Ni UBM, independent of solder composition. Corner and center chip position on the board were found to have the shortest drop lifetime due to stress waves generated from impact.

Characteristics of Joint Between Ag-Pd Thick Film Conductor and Solder Bump and Interfacial Reaction (Ag-Pd 후막도체와 솔더범프 사이의 접합특성 및 계면반응)

  • 김경섭;한완옥;이종남;양택진
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.1
    • /
    • pp.1-6
    • /
    • 2004
  • The requirements for harsh environment electronic controllers in automotive applications have been steadily becoming more and more stringent. Electronic substrate technologists have been responding to this challenge effectively in an effort to meet the performance, reliability and cost requirements. An effect of the plasma cleaning at the ECM(Engine Control Module) alumina substrate and the intermetallic compound layer between Sn-37wt%Pb solder and pad joints after reflow soldering has been studied. Organic residual carbon layer was removed by the substrate plasma cleaning. So the interfacial adhesive strength was enhanced. As a result of AFM measurement, conductor pad roughness were increased from 304 nm to 330 nm. $Cu_6/Sn_5$ formed during initial reflow process at the interface between TiWN/Cu pad and solder grew by the succeeding reflow process, so the grains became coarse. A cellular-shaped $Ag_3Sn$ was observed at the interface between Ag-Pd conductor pad and solder. The diameters of the $Ag_3Sn$ grains ranged from about 0.1∼0.6 $\mu\textrm{m}$. And a needle-shaped was also observed at the inside of the solder.

  • PDF