Browse > Article
http://dx.doi.org/10.4150/KPMI.2022.29.5.357

The Effect of SnO2 Addition on Sintering Behaviors in a Titanium Oxide-Copper Oxide System  

Lee, Ju-Won (The Center of Biomedical Materials and Biotechnology, Department of Materials Science and Engineering, Andong National University)
Oh, Kyung-Sik (The Center of Biomedical Materials and Biotechnology, Department of Materials Science and Engineering, Andong National University)
Chung, Tai-Joo (The Center of Biomedical Materials and Biotechnology, Department of Materials Science and Engineering, Andong National University)
Paek, Yeong-Kyeun (The Center of Biomedical Materials and Biotechnology, Department of Materials Science and Engineering, Andong National University)
Publication Information
Journal of Powder Materials / v.29, no.5, 2022 , pp. 357-362 More about this Journal
Abstract
The low-temperature sinterability of TiO2-CuO systems was investigated using a solid solution of SnO2. Sample powders were prepared through conventional ball milling of mixed raw powders. With the SnO2 content, the compositions of the samples were Ti1-xSnxO2-CuO(2 wt.%) in the range of x ≤ 0.08. Compared with the samples without SnO2 addition, the densification was enhanced when the samples were sintered at 900℃. The dominant mass transport mechanism seemed to be grain-boundary diffusion during heat treatment at 900℃, where active grain-boundary diffusion was responsible for the improved densification. The rapid grain growth featured by activated sintering was also obstructed with the addition of SnO2. This suggested that both CuO as an activator and SnO2 dopant synergistically reduced the sintering temperature of TiO2.
Keywords
Sintering additives; Densification; Microstructure; Low-temperature sintering; Activated sintering;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. K. Shin, Y. K. Paek and H. J. Lee: Int. J. Appl. Ceram. Technol., 3 (2006) 463.   DOI
2 J. Li, R. Fu, Y. Xu, Z. Fu and H. Su: J. Adv. Dielec., 4 (2014) 1450025.   DOI
3 J. Nie, J. M. Chan, M. Qin, N. Zhou and J. Luo: Acta Mater., 130 (2017) 329.   DOI
4 E. R. Leite, J. A. Cerri, E. Longo and J. A. Varela: Ceramica, 49 (2003) 87.   DOI
5 N. Dolet, J. M. Heintz, L. Rabardel, M. Onillon and J. P. Bonnet: J. Mater. Sci., 30 (1995) 365.   DOI
6 J. Lalande, R. Ollitrault-Fichet and P. Boch: J. Eur. Ceram. Soc., 20 (2000) 2415.   DOI
7 P. R. Bueno, M. R. Cassia-Santos, L. G. P. Simoes, J. W. Gomes, E. Longo and J. A. Varela: J. Am. Ceram. Soc., 85 (2002) 282.
8 V. C. Sousa, M. R. Cassia-Santos, C. M. Barrado, M. R. D. Bomio, E. R. Leite, J. A. Varela and E. Longo: J. Mater. Sci.: Materials in Electronics, 15 (2004) 665.
9 M. F. Yan: Mater. Sci. Eng., 48 (1981) 53.
10 J. Y. Woo, K. S. Oh, T. J. Chung, H. J. Lee and Y. K. Paek: J. Korean Ceram. Soc., 58 (2021) 219.   DOI
11 T. Rabe, W. A. Schiller, T. Hochheimer, C. Modes and A. Kipka: Int. J. Appl. Ceram. Technol., 2 (2005) 374.   DOI
12 Y. K. Paek, C. K. Shin, K. S. Oh and T. J. Chung: J. Korean Ceram. Soc., 53 (2016) 682.   DOI
13 A. Maitre, D. Beyssen and R. Podor: Ceram. Int., 34 (2008) 27.   DOI
14 E. A. N. Simonetti, T. C. Oliveira, A. E. C. Machado, A. A. C. Silva, A. S. Santos and L. S. Cividanes: Ceram. Int., 47 (2021) 17844.   DOI
15 P. R. Bueno, E. R. Leite, L. O. S. Bulhoes, E. Longo and C. O. Paiva-Santos: J. Eur. Ceram. Soc., 23 (2003) 887.   DOI