• Title/Summary/Keyword: Cu-doping effect

Search Result 65, Processing Time 0.028 seconds

A Study on the Magnetic Properties of Ceramics Superconductors for Simpllified Testing System (간소화 시스템적용을 위한 자기특성)

  • Lee, Sang-Heon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.339-341
    • /
    • 2012
  • The high Tc superconductor of YBCO system with the nominal composition of precursor was prepared from mixed powders of $Y_2O_3$, $BaCO_3$, CuO and $TiO_2$ by the thermal pyrolysis method. The effect of $TiO_2$ doping to Y based ceramics superconductors fabricated by the thermal pyrolysis reaction, to investigate the effect of the dopant on the superconductivity. The voltage appearing across the field-cooled HTS sample increased with external magnetic field. The improvement of critical current property as well as the mechanical property is important for the application. The improvement of the critical current can be achieved by forming the nano size defect working as a flux pining center inside the superconductor. We simply added $TiO_2$ to starting materials to dope $TiO_2$ and observed an increase in the trapped field and the critical current density up to at least 5 wt % $TiO_2$. The $TiO_2$ was converted to fine $BaTiO_3$ particles which were trapped in YBCO matrix during the sintering process. We observed a peak effect of Jc that can be attributed to $TiO_2$ doping and results suggest that introducing a proper amount of pinning centers can significantly enhance current density.

Synthesis of new Pb-based layered cuprates in (Pb,S)(Sr,La)CuOz compounds

  • Kim, Jin;Lee, Ho Keun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.3
    • /
    • pp.1-4
    • /
    • 2018
  • The effect of sulfate substitution on the formation of (Pb,S)-1201 type phase was investigated. Polycrystalline samples with nominal compositions of $(Pb_{0.5}B_{0.5-x}S_x)(Sr_{2-y}La_y)CuO_z$, (x = 0 - 0.5, y = 0.7 - 1.0) and $(Pb_{0.5}S_{0.5})(Sr_{2-y}La_y)CuO_z$ (y = 0.5 - 1.0) were prepared by using a solid-state reaction method. The samples were characterized by powder X-ray diffraction (XRD) and resistivity measurements. XRD data revealed that almost-single (Pb,S)-1201 phase samples could be obtained for x = 0.5 and y = 0.9-1.0, judging from the similar results of the XRD patterns between the (Pb,S)-1201 and (Pb,B)-1201 phases. Each of the samples has a crystal structure with tetragonal symmetry. The sample with x = 0.5 and y = 0.9 is found to show an onset of resistivity dropping at over 23 K and zero resistivity at 12 K.

N- and P-doping of Transition Metal Dichalcogenide (TMD) using Artificially Designed DNA with Lanthanide and Metal Ions

  • Kang, Dong-Ho;Park, Jin-Hong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.292-292
    • /
    • 2016
  • Transition metal dichalcogenides (TMDs) with a two-dimensional layered structure have been considered highly promising materials for next-generation flexible, wearable, stretchable and transparent devices due to their unique physical, electrical and optical properties. Recent studies on TMD devices have focused on developing a suitable doping technique because precise control of the threshold voltage ($V_{TH}$) and the number of tightly-bound trions are required to achieve high performance electronic and optoelectronic devices, respectively. In particular, it is critical to develop an ultra-low level doping technique for the proper design and optimization of TMD-based devices because high level doping (about $10^{12}cm^{-2}$) causes TMD to act as a near-metallic layer. However, it is difficult to apply an ion implantation technique to TMD materials due to crystal damage that occurs during the implantation process. Although safe doping techniques have recently been developed, most of the previous TMD doping techniques presented very high doping levels of ${\sim}10^{12}cm^{-2}$. Recently, low-level n- and p-doping of TMD materials was achieved using cesium carbonate ($Cs_2CO_3$), octadecyltrichlorosilane (OTS), and M-DNA, but further studies are needed to reduce the doping level down to an intrinsic level. Here, we propose a novel DNA-based doping method on $MoS_2$ and $WSe_2$ films, which enables ultra-low n- and p-doping control and allows for proper adjustments in device performance. This is achieved by selecting and/or combining different types of divalent metal and trivalent lanthanide (Ln) ions on DNA nanostructures. The available n-doping range (${\Delta}n$) on the $MoS_2$ by Ln-DNA (DNA functionalized by trivalent Ln ions) is between $6{\times}10^9cm^{-2}$ and $2.6{\times}10^{10}cm^{-2}$, which is even lower than that provided by pristine DNA (${\sim}6.4{\times}10^{10}cm^{-2}$). The p-doping change (${\Delta}p$) on $WSe_2$ by Ln-DNA is adjusted between $-1.0{\times}10^{10}cm^{-2}$ and $-2.4{\times}10^{10}cm^{-2}$. In the case of Co-DNA (DNA functionalized by both divalent metal and trivalent Ln ions) doping where $Eu^{3+}$ or $Gd^{3+}$ ions were incorporated, a light p-doping phenomenon is observed on $MoS_2$ and $WSe_2$ (respectively, negative ${\Delta}n$ below $-9{\times}10^9cm^{-2}$ and positive ${\Delta}p$ above $1.4{\times}10^{10}cm^{-2}$) because the added $Cu^{2+}$ ions probably reduce the strength of negative charges in Ln-DNA. However, a light n-doping phenomenon (positive ${\Delta}n$ above $10^{10}cm^{-2}$ and negative ${\Delta}p$ below $-1.1{\times}10^{10}cm^{-2}$) occurs in the TMD devices doped by Co-DNA with $Tb^{3+}$ or $Er^{3+}$ ions. A significant (factor of ~5) increase in field-effect mobility is also observed on the $MoS_2$ and $WSe_2$ devices, which are, respectively, doped by $Tb^{3+}$-based Co-DNA (n-doping) and $Gd^{3+}$-based Co-DNA (p-doping), due to the reduction of effective electron and hole barrier heights after the doping. In terms of optoelectronic device performance (photoresponsivity and detectivity), the $Tb^{3+}$ or $Er^{3+}$-Co-DNA (n-doping) and the $Eu^{3+}$ or $Gd^{3+}$-Co-DNA (p-doping) improve the $MoS_2$ and $WSe_2$ photodetectors, respectively.

  • PDF

A Study on Ion Exchange Method for Effective Ag Doping of Sputtering-Deposited CdTe Thin Film (스퍼터링 증착한 CdTe 박막의 효과적인 Ag 도핑을 위한 이온 교환법 연구)

  • Kim, Cheol-Joan;Park, Ju-Sun;Lee, Woo-Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1169-1174
    • /
    • 2011
  • CdTe thin-film solar cell technology is well known that it can theoretically improve its conversion efficiency and manufacturing costs compared to the conventional silicon solar cell technology, due to its optical band gap energy (about 1.45eV) for solar energy absorption, high light absorption capability and low cost requirements for producing solar cells. Although the prior studies obtained the high light absorption, CdTe thin film solar cell has not been come up to the sufficient efficiency yet. So, doping method was selected for the improvement of the electrical characteristics in CdTe solar cells. Some elements including Cu, Ag, Cd and Te were generally used for the p-dopant as substitutional acceptors in CdTe thin film. In this study, the sputtering-deposited CdTe thin film was immersed in $AgNO_3$ solution for ion exchange method to dope Ag ions. The effects of immersion temperature and Ag-concentration were investigated on the optical properties and electrical characteristics of CdTe thin film by using Auger electron spectroscopy depth-profile, UV-visible spectrophotometer, and a Hall effect measurement system. The best optical and electrical characteristics were sucessfully obtained by Ag doping at high temperature and concentration. The larger and more uniform diffusion of Ag ions made increase of the Ag ion density in CdTe thin film to decrease the series resistance as well as mede the faster diffusion of light by the metal ions to enhance the light absorption.

p-type CuI Thin-Film Transistors through Chemical Vapor Deposition Process (Chemical Vapor Deposition 공정으로 제작한 CuI p-type 박막 트랜지스터)

  • Seungmin Lee;Seong Cheol Jang;Ji-Min Park;Soon-Gil Yoon;Hyun-Suk Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.11
    • /
    • pp.491-496
    • /
    • 2023
  • As the demand for p-type semiconductors increases, much effort is being put into developing new p-type materials. This demand has led to the development of novel new p-type semiconductors that go beyond existing p-type semiconductors. Copper iodide (CuI) has recently received much attention due to its wide band gap, excellent optical and electrical properties, and low temperature synthesis. However, there are limits to its use as a semiconductor material for thin film transistor devices due to the uncontrolled generation of copper vacancies and excessive hole doping. In this work, p-type CuI semiconductors were fabricated using the chemical vapor deposition (CVD) process for thin-film transistor (TFT) applications. The vacuum process has advantages over conventional solution processes, including conformal coating, large area uniformity, easy thickness control and so on. CuI thin films were fabricated at various deposition temperatures from 150 to 250 ℃ The surface roughness root mean square (RMS) value, which is related to carrier transport, decreases with increasing deposition temperature. Hall effect measurements showed that all fabricated CuI films had p-type behavior and that the Hall mobility decreased with increasing deposition temperature. The CuI TFTs showed no clear on/off because of the high concentration of carriers. By adopting a Zn capping layer, carrier concentrations decreased, leading to clear on and off behavior. Finally, stability tests of the PBS and NBS showed a threshold voltage shift within ±1 V.

Theoretical Study of Flourine Doping Effect on the Y-Ba-Cu-O Superconductor (Y-Ba-Cu-O 초전도체의 불소 도핑효과에 대한 이론적 연구)

  • Choi, U-Sung;Park, Choon-Bae;Song, Min-Jong;Lee, Wang-Ro;Lee, Kee-Hag
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1993.05a
    • /
    • pp.134-136
    • /
    • 1993
  • Using the extended H$\ddot{u}$ckel molecular orbital method in connection with the tight binding model, we have studied electronic structure and related properties of superconducting $YBa_2Cu_3O_{7-x}$ crystals in which O-atoms in regular sites were selectively replaced with F atoms. The calculations are based on the crystal structure of Y-Ba-Cu-O obtained by Beno et al.. We use atomic coordinates that refer to the unrelaxed Y-Ba-Cu-O system. In analogy to the isomerism problem with molecules, we discuss all possible combinations of F-substitutions in O-sites with one, two, and four F atoms. The calculations are carried out within charged clusters model for the analogues of the YBa-free copperoxide. Our results suggest that the electronic structure of the symmetrically F-substituted or F-added compound is closer to that of the oxygen-deficient superconducting compound than that obtained from unsymmetrical substitution. This applies in particular if O is replaced with in an O(1) site. This suggests that superconductivity is very sensitive to the oxygen content of the $CuO_2$ layers.

  • PDF

The superconductivity and pinning properties of Y2O3-doped GdBa2Cu3O7-δ films prepared by pulsed laser deposition

  • Oh, Won-Jae;Park, Insung;Yoo, Sang-Im
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.4
    • /
    • pp.41-45
    • /
    • 2018
  • We have investigated the effect of $Y_2O_3$ nanoparticles on the pinning properties of $Y_2O_3$-doped $GdBa_2Cu_3O_{7-{\delta}}$ (GdBCO) films. Both undoped and $Y_2O_3$-doped GdBCO films were grown on $CeO_2$-buffered MgO (100) single crystal substrates by pulsed laser deposition (PLD) using KrF (${\lambda}=248nm$) laser. The $Y_2O_3$ doping contents were controlled up to ~ 2.5 area% by varying the internal angles of $Y_2O_3$ sectors put on the top surface of GdBCO target. Compared with the $Gd_2O_3$-doped GdBCO films previously reported by our group [1], the $Y_2O_3$-doped GdBCO films exhibited less severe critical temperature ($T_c$) drop and thus slightly enhanced critical current densities ($J_c$) and pinning force densities ($F_p$) at 65 K for the applied field parallel to the c-axis of the GdBCO matrix (B//c) with increasing the doping content. Below 40 K, the in-field $J_c$ and $F_p$ values of all $Y_2O_3$-doped GdBCO films exhibited higher than those of undoped GdBCO film, suggesting that $Y_2O_3$ inclusions might act as effective pinning centers.

Effect of nano-sized powder addition on the microstructure and superconducting properties of the YBCO thin film. (나노분말 첨가에 따른 YBCO 초전도 박막의 미셀구조 및 초전도 특성변화 연구)

  • Park, Jin-A;Kim, Byung-Joo;Im, Sun-Won;Ahn, Ji-Hyun;Kim, Ho-Jin;Hong, Gye-Won;Lee, Hee-Gyun
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.1998-2000
    • /
    • 2005
  • The effects of the addition of nanocrystalline Y2O3 powder on the microstructure and superconducting properties have been investigated in YBCO films prepared by TFA-MOD process. Precursor solution doped with extra $Y_2O_3$ Powder was prepared by adding $Y_2O_3$ powder into a stoichiometic precursor solution with a cation ratio of Y:Ba:Cu=1:2:3. Coating solutions with and without $Y_2O_3$ doping were coated on $LaAlO_3(100)$ single crystal by a dip coating method, cacination and conversion heat treatments were performed at the controlled atmosphere containing water vapor Current carry capacity(Jc) of YBCO film was enhanced about 50% by $Y_2O_3$ doping. It is thought that the enhancement of Jc is due to the better connectivity of YBCO grains and/or the flux pinning by the presence of nanocrystalline $Y_2O_3$ Particles embedded in YBCO grains.

  • PDF

Effect of Cerium Doping on Superconducting Properties of YBCO Film Prepared by TFA-MOD Method (MOD-TFA공정에 의한 YBCO박막 제조 시 cerium첨가효과에 관한 연구)

  • Yi, Keum-Young;Kwon, Youn-Kyung;Kim, Byeong-Joo;Lee, Hee-Gyoun;Hong, Gye-Won;Yoo, Jai-Moo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.12a
    • /
    • pp.33-34
    • /
    • 2006
  • The effects of Ba and Ce addition has been investigated in YBCO prepared by trifluoroacetate (TFA) metalorganic depostition (MOD) method. Precursor solutions with cation ratios of Y:Ba:Cu:Ce = 1:2+x:3:x (x = 0, 0.05, 0.1 and 1.5) have been prepared by adding an excess amount of cerium and barium. Coated film was calcined at lower temperature and conversion heat treatment at temperature of $780{\sim}810^{\circ}C$. It has been shown that the critical current (Ic) of YBCO film was degraded by doping of Ba and Ce atoms. But Ic was increased as the amount of doped Ba and Ce content increased from 5 % to 15 %. It was observed that there was little increase of a flux pinning force with Ba and Ce addition in YBCO film prepared by TFA-MOD process.

  • PDF

Performance Characteristics of p-i-n type Organic Thin-film Photovoltaic Cell with Rubrene:CuPc Hole Transport Layer (Rubrene:CuPc 정공 수송층이 도입된 p-i-n형 유기 박막 태양전지의 성능 특성 연구)

  • Kang, Hak-su;Hwang, Jongwon;Kang, Yongsu;Lee, Hyehyun;Choe, Youngson
    • Korean Chemical Engineering Research
    • /
    • v.48 no.5
    • /
    • pp.654-659
    • /
    • 2010
  • We have investigated the effect of rubrene-doped CuPc hole transport layer on the performance of p-i-n type bulk hetero-junction photovoltaic device with a structure of ITO/PEDOT:PSS/CuPc: rubrene/CuPc:C60(blending ratio 1:1)/C60/BCP/Al and have evaluated the current density-voltage(J-V) characteristics, short-circuit current($J_{sc}$), open-circuit voltage($V_{oc}$), fill factor(FF), and energy conversion efficiency(${\eta}_e$) of the device. By rubrene doping into CuPc hole transport layer, absorption intensity in absorption spectra decreased. However, the performance of p-i-n organic type bulk hetero-junction photovoltaic device fabricated with crystalline rubrene-doped CuPc was improved since rubrene shows higher bandgap and hole mobility compared to CuPc. Increased injection currents have effected on the performance improvement of the present device with energy conversion efficiency(${\eta}_e$) of 1.41%, which is still lower value compared to silicone solar cell and many efforts should be made to improve organic photovoltaic devices.