Performance Characteristics of p-i-n type Organic Thin-film Photovoltaic Cell with Rubrene:CuPc Hole Transport Layer

Rubrene:CuPc 정공 수송층이 도입된 p-i-n형 유기 박막 태양전지의 성능 특성 연구

  • Kang, Hak-su (Department of chemical Engineering, Pusan National University) ;
  • Hwang, Jongwon (Department of chemical Engineering, Pusan National University) ;
  • Kang, Yongsu (Department of chemical Engineering, Pusan National University) ;
  • Lee, Hyehyun (Department of chemical Engineering, Pusan National University) ;
  • Choe, Youngson (Department of chemical Engineering, Pusan National University)
  • 강학수 (부산대학교 화학공학과) ;
  • 황종원 (부산대학교 화학공학과) ;
  • 강용수 (부산대학교 화학공학과) ;
  • 이혜현 (부산대학교 화학공학과) ;
  • 최영선 (부산대학교 화학공학과)
  • Received : 2010.04.20
  • Accepted : 2010.05.25
  • Published : 2010.10.31

Abstract

We have investigated the effect of rubrene-doped CuPc hole transport layer on the performance of p-i-n type bulk hetero-junction photovoltaic device with a structure of ITO/PEDOT:PSS/CuPc: rubrene/CuPc:C60(blending ratio 1:1)/C60/BCP/Al and have evaluated the current density-voltage(J-V) characteristics, short-circuit current($J_{sc}$), open-circuit voltage($V_{oc}$), fill factor(FF), and energy conversion efficiency(${\eta}_e$) of the device. By rubrene doping into CuPc hole transport layer, absorption intensity in absorption spectra decreased. However, the performance of p-i-n organic type bulk hetero-junction photovoltaic device fabricated with crystalline rubrene-doped CuPc was improved since rubrene shows higher bandgap and hole mobility compared to CuPc. Increased injection currents have effected on the performance improvement of the present device with energy conversion efficiency(${\eta}_e$) of 1.41%, which is still lower value compared to silicone solar cell and many efforts should be made to improve organic photovoltaic devices.

박막형 유기 태양전지의 효율 향상을 위하여 정공 수송층인 CuPc 층에 p형 유기 반도체인 rubrene을 함량 별로 도핑하여 ITO/PEDOT:PSS/CuPc: rubrene/CuPc:C60(blending ratio 1:1)/C60/BCP/Al의 이종접합구조를 가지는 p-i-n형 유기 박막형 태양전지 소자를 제조한 후, 유기 태양전지의 전류 밀도-전압(J-V) 특성, 단락 전류($J_{sc}$), 개방 전압($V_{oc}$), 충진 인자(fill factor:FF), 에너지 전환 효율(${\eta}_e$) 등을 측정하고 계산하여 성능 평가를 수행 하였다. 정공 수송층으로 사용된 CuPc 층에 rubrene을 도핑함으로써 에너지 흡수 스펙트럼에서 흡수 강도가 감소하였다. 그러나 CuPc 보다 큰 밴드갭을 가지며 높은 정공 이동도를 가지는 결정성 rubrene의 도핑에 의해 제조된 p-i-n형 유기 박막 태양전지의 성능은 향상 되는 것으로 확인되었다. 제조된 유기 태양전지의 에너지 전환 효율(${\eta}_e$)은 1.41%로 실리콘 태양전지와 비교해서 아직도 성능 향상을 위한 많은 노력이 필요함을 보여 준다.

Keywords

References

  1. Barry, P. R., Jiangeng, X., Soichi, U. and Stephen, R. F., "Mixed Donor-acceptor Molecular Heterojunctions for Photovoltaic Applications. I. Material Properties," J. Appl. Phys. 98(12), 124902 (2005). https://doi.org/10.1063/1.2142072
  2. Jiangeng, X., Barry, P. R., Soichi, U. and Stephen, R. F., "Mixed Donor-Acceptor Molecular Heterojunctions for Photovoltaic Applications. II. Device Performance," J. Appl. Phys. 98(12), 124903 (2005). https://doi.org/10.1063/1.2142073
  3. Sean, E. S., Christoph, J. B., N. Serdar, S., Franz, P., Thomas, F. and Jan, C. H., "2.5% Efficient Organic Plastic Solar Cells," Appl. Phys. Lett. 78(6), 841-843(2001). https://doi.org/10.1063/1.1345834
  4. Schultes, S. M., Sullivan, P., Heutz, S., Sanderson, B. M. and Jones, T. S., "The Role of Molecular Architecture and Layer Composition on the Properties and Performance of CuPc-C60 Photovoltaic Devices," Mat. Sci. Eng. C., 25, 858-865(2005). https://doi.org/10.1016/j.msec.2005.06.039
  5. Drechsel, J., Männig, B., Kozlowski, F., Gebeyehu, D., Werner, A., Koch, M., Leo, K. and Pfeiffer, M., "High Efficiency Organic Solar Cells Based on Single or Multiple PIN Structures," Thin Solid Films, 451, 515-517(2004). https://doi.org/10.1016/j.tsf.2003.11.044
  6. Vibha, T., Debjit, D., Samal G. S., Asha, A. and Satyendra K., "Role of Exciton Blocking Layers in Improving Efficiency of Copper Phthalocyanine Based Organic Solar Cells," J. Non-Cryst. Solids, 354, 2901-2904(2008). https://doi.org/10.1016/j.jnoncrysol.2007.10.098
  7. Gebeyehu, D., Maennig, B., Drechsel, J., Leo, K. and Pfeiffer, M., "Bulk-Heterojunction Photovoltaic Devices Based on Donor- Acceptor Organic Small Molecule Blends," Sol. Energ. Mat. Sol. C., 79(1), 81-92(2003). https://doi.org/10.1016/S0927-0248(02)00369-0
  8. Park, J. H. and Soul, J. Y., "Current Status and Future Trend of Thin Film Photovoltaic Technology", Korean Chem. Eng. Res., 42(3), 269-279(2004).
  9. Christoph, J. B., Jens, A. H., Pavel, S. and Christoph, W., "Production Aspects of Organic Photovoltaics and Their Impact on the Commercialization of Devices," MRS Bull., 30(1), 50-52(2005). https://doi.org/10.1557/mrs2005.10
  10. Green, M. A., Silicon Solar Cells: Advanced Principles and Practice, Bridge Printery, Sydney(1995).
  11. Martin, I. H., et al, "Advanced Technology Paths to Global Climate Stability: Energy for a Greenhouse Planet," Science, 298(1), 981-987(2002). https://doi.org/10.1126/science.1072357
  12. Christoph, J. B., Sariciftci, N. S. and Hummelen, J. C., "Plastic Solar Cells," Adv. Funct. Mater., 11(1), 15-26(2001). https://doi.org/10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO;2-A
  13. Peter, P., Aharon, Y. and Stephen, R. F., "Small Molecular Weight Organic Thin-film Photodetectors and Solar Cells," J. Appl. Phys. 93(7), 3693-3723(2003). https://doi.org/10.1063/1.1534621
  14. Brian, A. G., "Excitonic Solar Cells," J. Phys. Chem. B., 107(20), 4688-4698(2003). https://doi.org/10.1021/jp022507x
  15. Jiangeng, X., Barry, P. R., Soichi, U. and Stephen, R. F., "A Hybrid Planar-Mixed Molecular Heterojunction Photovoltaic Cell," Adv. Mater., 17(1), 66-71(2005). https://doi.org/10.1002/adma.200400617
  16. Padinger, F., Rittberger, R. S. and Sariciftci, N. S., "Effects of Postproduction Treatment on Plastic Solar Cells," Adv. Funct. Mater., 13(1), 85-88(2003). https://doi.org/10.1002/adfm.200390011
  17. Dittmer, J. J., Lazzaroni, R., Leclère, Ph., Moretti, P., Granström, M., Petritsch, K., Marseglia, E. A., Friend, R. H., Brédas, J. L., Rost, H. and Holmes, A. B., "Crystal Network Formation in Organic Solar Cells," Sol. Energ. Mat. Sol. C., 61(1), 53-61(2000). https://doi.org/10.1016/S0927-0248(99)00096-3
  18. Geens, W., Aernouts, T., Poortmans, J. and Hadziioannou, G., "Organic Co-evaporated Films of a PPV-pentamer and C60: Model Systems for Donor/acceptor Polymer Blends," Thin Solid Films, 403, 438-443(2002). https://doi.org/10.1016/S0040-6090(01)01585-1
  19. Geens, W., Sean, E. S., Bernhard, W., Christoph, J. B., Jef, P. and N. Serdar, S., "Dependence of Field-effect Hole Mobility of PPVbased Polymer Films on the Spin-casting Solvent," Adv. Mater., 3, 105-110(2002).
  20. Martens, T., D'Haen, J., Munters, T., Beelen, Z., Goris, L., Manca, J., D'Olieslaeger, M., Vanderzande, D., Schepper, L. D. and Andriessen, R., "Disclosure of the Nanostructure of MDMO-PPV: PCBM Bulk Hetero-junction Organic Solar Cells by a Combination of SPM and TEM," Synthetic Met., 138, 243-247(2003). https://doi.org/10.1016/S0379-6779(02)01311-5
  21. Drees, M., Premaratne, K., Graupner, W., Heflin, J. R., Davis, R. M., Marciu, D. and Miller, M., "Creation of a Gradient Polymerfullerene Interface in Photovoltaic Devices by Thermally Controlled Interdiffusion," Appl. Phys. Lett. 81(24), 4607-4609(2002). https://doi.org/10.1063/1.1522830
  22. Blochwitz, J., Fritz, T., Pfeiffer, M., Leo, K., Alloway, D. M., Lee, P. A. and Armstrong, N. R., "Interface Electronic Structure of Organic Semiconductors with Controlled Doping Levels," Org. Electron., 2(2), 97-104(2001). https://doi.org/10.1016/S1566-1199(01)00016-7
  23. Tetsuya, T., Jun S., Toshihiro, Y. and Kazuhiro, S., "Doping Effects for Organic Photovoltaic Cells Based on Small-molecular- weight Semiconductors," Sol. Energ. Mater. Sol. C., 93(6), 742-745(2009). https://doi.org/10.1016/j.solmat.2008.09.018
  24. De Boer, R. W. I., Gershenson, M. E., Morpurgo, A. F. and Podzorov, V., "Organic Single-crystal Field-Effect Transistors," Phys. Status. Solidi. A., 201(6), 1302-1331(2004). https://doi.org/10.1002/pssa.200404336
  25. Yu, G., Gao, J., Hummelen, J. C., Wudl, F. and Heeger A. J., "Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions," Science, 270(15), 1789-1791(1995). https://doi.org/10.1126/science.270.5243.1789
  26. Schon, J. H., Kloc, Ch., Bucher, E. and Batlogg, B., "Efficient Organic Photovoltaic Diodes Based on Doped Pentacene," Nature, 403, 408(2000). https://doi.org/10.1038/35000172
  27. Kang, H. S., Park, D. W. and Choe, Y. S., "Enhanced Performance of Organic Photovoltaic Cells Using F4-TCNQ-PEDOT: PSS Films as a Hole Conducting Layer," Mol. Cryst. Liq. Cryst., 519, 252-259(2010). https://doi.org/10.1080/15421401003598306