• Title/Summary/Keyword: Cu-alloy

Search Result 1,269, Processing Time 0.031 seconds

The Influence of (Pd+Ag) Additions on the Glass Forming Ability of Zr-Al-Cu-Ni based Alloys (Zr-Al-Cu-Ni계 합금의 비정질형성능에 미치는 Pd과 Ag 복합첨가의 영향)

  • Kim, Mi-Hye;Lee, Byung-Woo;Kim, Sung-Gyu;Bae, Cha-Hurn;Jeong, Hae-Yong
    • Journal of Korea Foundry Society
    • /
    • v.24 no.1
    • /
    • pp.40-44
    • /
    • 2004
  • The influence of Pd and Ag additions on the thermal stability, the glass forming ability (GFA) and mechanical property of $Zr_{55}Al_{10}Cu_{20}Ni_{10}Pb_{(5-x)}Ag_x$ (x = $0{\sim}5at%$) alloys obtained by melt spun and injection casting method have been investigated by using of X-ray diffraction, thermal analysis (DTA, DSC) and micro-Vickers hardness(Hv) testing. The thermal properties of melt-spun $Zr_{55}Al_{10}Cu_{20}Ni_{10}Pb_{(5-x)}Ag_x$ (x = $0{\sim}5at%$) alloys exhibit a supercooled liquid region(${\Delta}T_x$) exceeding 91 K before crystallization. The largest ${\Delta}T_x$ reaches as large as 126 K for the $Zr_{55}Al_{10}Cu_{20}Ni_{10}Pb_5$ alloy. The reduced glass transition temperature, $T_{rg}$ increased with increasing Ag content. The largest $T_{rg}$ is obtained for the $Zr_{55}Al_{10}Cu_{10}Ni_{10}Ag_5$ alloy. The $Zr_{55}Al_{10}Cu_{10}Ni_{10}Ag_5$ bulk amorphous alloy rod with 3 mm in diameter was fabricated by injection casting. Hv increased with increasing Ag content and the largest value was obtained for the $Zr_{55}Al_{10}Cu_{10}Ni_{10}Ag_5$ bulk amorphous alloy.

A Study on the Wear Properties of Cu-free Ecofriendly Vehicle Brake Pad (구리를 함유하지 않은 친환경 자동차 브레이크 패드의 마모 특성에 관한 연구)

  • Kim, Ki-Bong;Yang, Sangsun;Lee, Seong-Ju;Hwang, Suk-Hun;Kim, Sin-Wook;Kim, Yong-Jin
    • Journal of Powder Materials
    • /
    • v.25 no.1
    • /
    • pp.30-35
    • /
    • 2018
  • The friction characteristics of Al-Fe alloy powders are investigated in order to develop an eco-friendly friction material to replace Cu fiber, a constituent of brake-pad friction materials. Irregularly shaped Al-Fe alloy powders, prepared by gas atomization, are more uniformly dispersed than conventional Cu fiber on the brake pad matrix. The wear rate of the friction material using Al-8Fe alloy powder is lower than that of the Cu fiber material. The change in friction coefficient according to the friction lap times is 7.2% for the Cu fiber, but within 3.8% for the Al-Fe alloy material, which also shows excellent judder characteristics. The Al-Fe alloy powders are uniformly distributed in the brake pad matrix and oxide films of Al and Fe are homogeneously formed at the friction interface between the disc and pad, thus exhibiting excellent friction and lubrication characteristics. The brake pad containing Al-Fe powders avoids contamination by Cu dust, which is generated during braking, by replacing the Cu fiber while maintaining the friction and lubrication performance.

Properties of Aluminum Clad Sheets for Condenser Fins Fabricated with Transition Elements(Cu, Cr) added to Al-1.4Mn-1.0Zn Base Alloys (Cu, Cr 등 천이원소가 첨가된 Al-1.4Mn-1.0Zn 합금을 심재로 하여 제조된 콘덴서 핀용 알루미늄 클래드 박판의 특성)

  • Euh, K.;Kim, H.W.;Lee, Y.S.;Oh, Y.M.;Kim, D.B.
    • Transactions of Materials Processing
    • /
    • v.23 no.6
    • /
    • pp.386-391
    • /
    • 2014
  • In the current study, Al-Mn-Zn alloys are strip-cast and used as the base alloy for the core of aluminum clad sheets used in automotive condenser fins. Transition elements such as Cu and Cr are added to the base core alloy in order to improve the properties of the clad sheets. The AA4343/Al-Mn-Zn-X(X: Cu, Cr)/AA4343 clad sheets are fabricated by roll bonding and further cold-rolled to a thickness of 0.08 mm. Clad sheets were intermediately annealed during cold rolling at $450^{\circ}C$ in order to obtain 40% reduction at the final thickness. Tensile strength and sag resistance of the clad sheets are improved by Cu additions to the core alloy, while corrosion resistance is also increased. Cr-additions to the clad sheets enhance sag resistance and provide low enough corrosion, although tensile strength is not improved. The effect of Cu and Cr additions on the properties of the clad sheets is elucidated by microstructural analysis.

Infiltration of the Cu-Ti Alloys to Porous $Al_2O_3$ Ceramic Coating (Cu-Ti합금의 침투에 의한 $Al_2O_3$ 세라믹 용사층의 복합화)

  • 이형근;김대훈;황선효
    • Journal of Welding and Joining
    • /
    • v.10 no.4
    • /
    • pp.213-221
    • /
    • 1992
  • Al$_{2}$O$_{3}$ ceramic coating layer by gas flame spraying was very porous, therefore it could not have wear and corrosion resistance at all. To get a dense and strong coating layer, a method to infiltrate an alloy into the pores of $Al_{2}$O$_{3}$ ceramic coating was investigated. Cu-Ti alloys, which had good wettability and reactivity with $Al_{2}$O$_{3}$ ceramic, were examined for infiltration. Infiltration of the alloys was performed in vacuum at 1100.deg.C. The melt of Cu-50 at % Ti alloy was well penetrated through the porous $Al_{2}$O$_{3}$ coating and tightly sealed the pores, unbounded area and microcracks in the coating. The alloy melt in the pores reacted with $Al_{2}$O$_{3}$ ceramic to produce a suboxide phase, Cu$_{2}$Ti$_{4}$O. This composite layer which was composed of $Al_{2}$O$_{3}$ and Cu$_{2}$Ti$_{4}$O phase had good microstructure and wear and corrosion resistance. Additionally, microstructures at interfaces between coating layers were greatly improved owing to the effect of vacuum heat treating.

  • PDF

The Evaluation of Diffusivity of Lithium for Coarsening of δ' Precipitate in AI-Li-Cu-Mg-Zr Alloy (Al-Li-Cu-Mg-Zr 합금에 있어서 δ'상 조대화를 위한 Lithium의 확산계수 평가)

  • Chung, D.S.;Kim, E.S.;Cho, H.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.1
    • /
    • pp.17-24
    • /
    • 1994
  • The evaluation and analysis of diffusivity of lithium for coarsening and coarsening kinetics of ${\delta}^{\prime}$ precipitate in Al-Li-Cu-Mg-Zr alloy aged at $170^{\circ}C$ have been investigated by transmission electron microscopy. With ageing time, ${\delta}^{\prime}$ precipitate coaesened to followed $\bar{\gamma}{\propto}t^{1/3}$ and coarsening kinetics was found to be obeyed to the Lifshitz-Slyozov-Wagner(LSW) theory and diffusivity of lithium for coarsening of ${\delta}^{\prime}$ precipitate in Al-Li-Cu-Mg-Zr alloy was obtained to be $5.85{\times}10^{-17}{\sim}1.53{\times}10^{-16}$ by experimental coarsening rate constant and various coarsening kinetic theory. Diffusivity of lithium measured by using various model but MLSW and Tsumuraya (VI) et al. model in Al-Li-Cu-Mg-Zr alloy is similar to that calculated by the Costas's diffusivity equation. It was, therefore, suggested that additing to the Cu, Mg and Zr element in Al-Li system have no great effect on diiffusivity of lithium for coarsening of ${\delta}^{\prime}$ This suggest that in matrix.

  • PDF

A Study on Formation of Thick Hardened Layer on Al Alloy Surface by PYAW Process (PTAW법에 의한 Al 합금 표면의 후막경화층 형성에 관한 연구)

  • 임병수;김봉수;오세훈;황선효;서창제
    • Journal of Welding and Joining
    • /
    • v.15 no.5
    • /
    • pp.92-103
    • /
    • 1997
  • The purpose of this study is to improve the wear resistance and hardness of Al alloy by making a formation of the thick surface hardening layers. The thick surface hardening layers were formed by PTAW(Plasma Transferred Arc Welding), with the addition of metal powders (Cu), ceramics powders (NbC, TiC), and mixture powders (Cu+NbC) in Al alloy (A1050, A5083). Mechanical properties of overlaid layers (wear resistance, hardness) were investigated in relation to the microstructure. The results obtained are summarized as follows: The depth of penetration was increased with increasing powder feeding rate. It is considered that these increase were due to the thermal pinch effect by the addition of powders, especially, for the Cu powders, were due to the heat of reaction with the matrix. The hardness and wear resistance of overlaid layers were improved with increasing powder feeding rate. For the Cu powders, it is considered that these increase were due to the increase of the formation of ${\theta}(CuAl_2)$ phase with increasing feeding rate of Cu powers.

  • PDF