• Title/Summary/Keyword: Cu-Sn alloy layer

Search Result 39, Processing Time 0.026 seconds

Bending Impact Properties Evaluation of Sn-xAg-Cu Lead Free Solder Composition and aging treatment (시효처리한 Sn-xAg-Cu계 무연솔더 조성에 따른 굽힘충격 특성평가)

  • Jang, Im-Nam;Park, Jai-Hyun;Ahn, Yong-Sik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.2
    • /
    • pp.49-55
    • /
    • 2011
  • The failure of electronic instruments is mostly caused by heat and shock. This shock causes the crack initiation at the solder joint interface of PCB component which is closely related with the formation of intermetallic compound(IMC). The Ag content in Pb-free Sn-xAg-0.5Cu solder alloy used in this study was 1.0, 1.2 and 3.0 wt.%, respectively. After soldering with PCB component, isothermal aging was performed to 1000 hrs. The growth of IMC layer was observed during isothermal aging. The drop impact property of solder joint was evaluated by impact bending test method. The solder joint made with the solder containing lower Ag content showed better impact bending property compared with that with higher Ag content. On the contrary to this result, the solder joint made with solder containing higher Ag content showed better impact bending property after aging. It should be caused by the formation of fine $Ag_3Sn$, which relieved the impact. It showed consequently the different effect of fine $Ag_3Sn$ and coarse $Cu_6Sn_5$ particles formed in the IMC layer on the impact bending property.

A STUDY ON THE BONDING BEHAVIOR OF PALLADIUM-BASED ALLOYS FOR CERAMO-MENTAL RESTORATION (도재 소부용 팔라디움계 합금의 도재 결합양상에 관한 연구)

  • Chang, Hoon;Lim, Ho-Nam;Choi, Boo-Byung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.27 no.1
    • /
    • pp.143-179
    • /
    • 1989
  • To observe the bonding behavior of palladium-based alloys to porcelain; 1. Pd-Co binary alloy with the higher cobalt content, 2. Pd-Co binary alloy with the lower cobalt content, 3. Pd-Ag-Sn ternary alloy, 4. Pd-Ag binary alloy, 5. Pd-Cu-Au ternary alloy and 6. Pd-Cu binary alloy were made as 6 groups of experimental alloys. Each group of alloy was divided into 4 sub-groups such as one sub-group that was not degassed and three sub-groups that degassed for 5 minutes, 10 minutes and 15 minutes. On each specimen, weight changes after degassing, morphological changes of oxide layer by changing the degassing time, compositional changes at metal-ceramic interface and bond strength of metal-ceramic measured with planar shear test were observed and compared. The results of the present study allow the following conclusions to be drawn: 1. The alloy showing the greatest bond strength was Pd-Cu alloy without gold and bond strength was decreased by alloying gold to them. 2. Although Pd-Co alloy showed the most prominent oxidation behavior, bond strength of them to porcelain was not greatly high by the formation of porosities at metal-ceramic interfaces. 3. Likewise tin, cobalt formed the peaks on line profiles at metal-ceramic interface, however copper did not exhibit such peaks on line profiles. 4. Mainly, oxide layer on Pd-Co alloy was composed with cobalt, and for Pd-Co alloy with higher cobalt content the rise of bond strength was not significant by increased degassing time. 5. On Pd-Ag alloy not containing tin, during degassing for 15 minutes silver content was increased at metal-ceramic interface. 6. As an oxidized element, tin formed the oxide layers that widen their area by increasing the degassing time, while cobalt and copper showed the morphological changes of particle or crystal on oxide layer.

  • PDF

Effects of Electrodeposition condition on the fracture characteristics of 80Sn-20Pb electrodeposits aged at 15$0^{\circ}C$ (15$0^{\circ}C$에서 시효처리한 80Sn-20Pb 합금 도금층의 파괴특성에 전착조건이 미치는 영향)

  • 김정한;서민석;권혁상
    • Journal of the Korean institute of surface engineering
    • /
    • v.27 no.5
    • /
    • pp.292-302
    • /
    • 1994
  • Alloy deposits of 80Sn-20Pb, electroplated on Cu-based leadframe alloy from an organic sulfonate bath were aged at $150^{\circ}C$ to form intermetallic phases between substrate and deposit, and effects of the deposit morphology, influenced by deposition conditions, on the fracture resistance of the 80Sn-20Pb deposit aged at $150^{\circ}C$ were examined. The growth rate of intermetallic compound layer on aging depended on the microstructure of deposit ; it was fastest in deposit formed using pulse current in bath without grain refining additive, but slowest in deposit formed using dc current in bath containing grain refining additive in spite of similar structure with equivalent grain size. The grain refining additive incorporated in electrodeposit appears to inhibit diffusion of atoms on aging, resulting in slow growth of intermetallic layer in the thickness direction but substantial growth in the lateral one. Density of surface cracks that were occurring when samples were subjected to the $90^{\circ}$-bending test increased with increasing the thickness of intermatallic layer on aging. For the same aged samples, the surface crack density of the sample electrodeposited from a bath containing the grain refining additive was the least due to the inhibiting effect of the additive incorporated into the deposit during electrolysis on atomic diffusion.

  • PDF

Corrosion Characteristics of Excavated Bronze Artifacts According to Corrosion Environment (부식 환경에 따른 출토 청동 유물의 부식 특성)

  • Jang, Junhyuk;Bae, Gowoon;Chung, Kwangyong
    • Korean Journal of Heritage: History & Science
    • /
    • v.53 no.1
    • /
    • pp.24-33
    • /
    • 2020
  • In excavated bronze artifacts, corrosion products of various shapes and colors are observed due to multiple corrosion factors coexisting in the burial environment, and these corrosion products can constitute important data not only in terms of long-term corrosion-related information, but also in connection with preservation of artifacts. As such, scientific analysis is being carried out on the corrosion layer and corrosion products of bronze artifacts, and the corrosion mechanism and the characteristics of corrosion products elucidated, which is essential for interpreting the exposed burial environment and its association with corrosion factors inside the burial environment. In this study, after classifying excavated bronze artifacts according to alloy ratio and fabrication technique, comprehensive analysis of the surface of corrosion artifacts, corrosion layer, and corrosion products was carried out to investigate the corrosion mechanism, formation process of the corrosion layer, and characteristics of corrosion products. The study designated two groups according to alloy ratio and fabrication technique. In Group 1, which involved a Cu-Sn-Pb alloy and had no heat treatment, the surface was rough and external corrosion layers were formed on a part, or both sides, of the inside and the outside, and the surface was observed as being green or blue. α+δ phase selection corrosion was found in the metal and some were found to be concentrated in an empty space with a purity of 95 percent or more after α+δ phase corrosion. The Cu-Sn alloy and heat-treated Group 2 formed a smooth surface with no external corrosion layer, and a dark yellow surface was observed. In addition, no external corrosion layer was observed, unlike Group 1, and α corrosion was found inside the metal. In conclusion, it can be seen that the bronze artifacts excavated from the same site differ in various aspects, including the formation of the corrosion layer, the shape and color of the corrosion products, and the metal ion migration path, depending on the alloy ratio and fabrication technique. They also exhibited different corrosion characteristics in the same material, which means that different forms of corrosion can occur depending on the exposure environment in the burial setting. Therefore, even bronze artifacts excavated from the same site will have different corrosion characteristics depending on alloy ratio, fabrication technique, and exposure environment. The study shows one aspect of corrosion characteristics in specific areas and objects; further study of corrosion mechanisms in accordance with burial conditions will be required through analysis of the corrosive layer and corrosive product characteristics of bronze artifacts from various regions.

Solderability of thin ENEPIG plating Layer for Fine Pitch Package application (미세피치 패키지 적용을 위한 thin ENEPIG 도금층의 솔더링 특성)

  • Back, Jong-Hoon;Lee, Byung-Suk;Yoo, Sehoon;Han, Deok-Gon;Jung, Seung-Boo;Yoon, Jeong-Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.1
    • /
    • pp.83-90
    • /
    • 2017
  • In this paper, we evaluated the solderability of thin electroless nickel-electroless palladium-immersion gold (ENEPIG) plating layer for fine-pitch package applications. Firstly, the wetting behavior, interfacial reactions, and mechanical reliability of a Sn-3.0Ag-0.5Cu (SAC305) solder alloy on a thin ENEPIG coated substrate were evaluated. In the wetting test, maximum wetting force increased with increasing immersion time, and the wetting force remained a constant value after 5 s immersion time. In the initial soldering reaction, $(Cu,Ni)_6Sn_5$ intermetallic compound (IMC) and P-rich Ni layer formed at the SAC305/ENEPIG interface. After a prolonged reaction, the P-rich Ni layer was destroyed, and $(Cu,Ni)_3Sn$ IMC formed underneath the destroyed P-rich Ni layer. In the high-speed shear test, the percentage of brittle fracture increased with increasing shear speed.

Evaluation of Shear Strength for Pb-free Solder/Ni and Cu Plate Joints due to Reflow Time (리플로우 시간에 따른 Pb-free 솔더/Ni 및 Cu 기판 접합부의 전단강도 평가)

  • Ha, Byeori;Yu, Hyosun;Yang, Sungmo;Ro, Younsik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.134-141
    • /
    • 2013
  • Reflow soldering process is essential in electronic package. Reflow process for a long time results from the decrease of reliability because IMC is formed excessively. Solder alloys of Sn-37Pb and Sn-Ag with different kinds of Cu contents (0, 0.5 and 1 wt.%) as compared with Ni and Cu plate joints are investigated according to varying reflow time. The interfaces of solder joints are observed to analyze IMC (intermetallic compound) growth rate by scanning electron microscope (SEM). Shear test is also performed by using SP (Share-Punch) tester. The test results are compared with the solder joints of two different plates (Ni and Cu plate). $Cu_6Sn_5$ IMCs are formed on Cu plate interfaces after reflows in all samples. Ni3Sn4 and $(Cu,Ni)_6Sn_5$ IMCs are also formed on Ni plate interfaces. The IMC layer forms are affected by reflow time and contents of solder alloy. These results show that mechanical strength of solder joints strongly depends on thickness and shape of IMC.

Manufacturing Techniques and Alloying Compositions of Metal Decorative Artifacts in 18th Century, Myanmar

  • Lee, Jae Sung;Win, Yee Yee;Lee, Bonnie;Yu, Jae Eun
    • Journal of Conservation Science
    • /
    • v.36 no.4
    • /
    • pp.296-305
    • /
    • 2020
  • Konbaung Dynasty was the last unified dynasty that ruled Myanmar from 18th to 19th century. During this time Buddhist art flourished in Myanmar due to the interest of the rulers toward their traditional culture. Metal decorative artifacts in the 18th century are classified into structures and Buddha statues. They are further subdivided into gilt-bronze and bronze objects, depending on their material component. Three-dimensional gilt-bronze decorative artifacts were cast with a brass alloy of Cu-Zn-Sn-Pb and their surfaces were gilded with extremely thin gold leaves (less than 1 ㎛ in thickness). The gilded layer approximately comprised 10 wt% silver in addition to the main element, gold. The lack of Hg in the gilded layer, indicated that the amalgam gilding technique was not applied. The analysis results indicated that the lacquered gilding technique was applied to the objects. Bronze decorative artifacts without gilding were cast with materials containing Cu-Sn-Pb. The bronze pavilions and bronze Buddha staues were crafted using the same alloy of high-tin bronze, which approximately contained 20 wt% Sn. No heat treatment was applied to reduce the brittleness of the objects after they were cast with a large amount of Sn. The most significant difference between the gilt-bronze and bronze decorative artifacts lie in their elemental compositions. The gilt-bronze decorative artifacts with their gilded surface were manufactured using brass containing zinc, while the unplated bronze decorative artifacts were composed of bronze containing tin. Artifacts of the same type and size are classified differently depending on the materials utilized in the surface treatment such as gilding.

Study on Corrosion Characteristic of New Nb-containing Zr based Alloys for Fuel cladding (Nb 첨가 핵연료피복관용 Zr 신합금의 부식특성 연구)

  • Choe, Byeong-Gwon;Ha, Seung-Won;Jeong, Yong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.11 no.5
    • /
    • pp.405-412
    • /
    • 2001
  • Corrosion tests were carried out in $360^{\circ}C$ water and $360^{\circ}C$ 70ppm LiOH solution to investigate the corrosion behavior of new zirconium alloys (Zr-0.4Nb-0.8Sn-xFeCrMn, Zr-0.2Nb-1.1Sn-xFeCrMn, Zr-1.0Nb-xFeCu). Microstructures of tested alloys were analyzed by optical microscope and TEM. The cross-sectional surface and crystalline structure of the oxide layer were analyzed by SEM and XRD. From the results of corrosion test, all the alloys showed higher corrosion rates in $360^{\circ}C$ 70ppm LiOH aqueous solution thats in $360^{\circ}C$ water. Especially, high Nb-containing alloy exhibited the acceleration of corrosion rate in LiOH solution. The low Nb- and Sn-added alloys showed better corrosion resistance than the Sn- free high Nb alloy. from the effect of final annealing on the corrosion, it was observed that the partially recrystallized alloys showed better corrosion resistance than fully recrystallized alloys. This would be related to the size and distribution of the second phase particles.

  • PDF

Enhancing Die and Wire Bonding Process Reliability: Microstructure Evolution and Shear Strength Analysis of Sn-Sb Backside Metal (다이 및 와이어 본딩 공정을 위한 Sn-Sb Backside Metal의 계면 구조 및 전단 강도 분석)

  • Yeo Jin Choi;Seung Mun Baek;Yu Na Lee;Sung Jin An
    • Korean Journal of Materials Research
    • /
    • v.34 no.3
    • /
    • pp.170-174
    • /
    • 2024
  • In this study, we report the microstructural evolution and shear strength of an Sn-Sb alloy, used for die attach process as a solder layer of backside metal (BSM). The Sb content in the binary system was less than 1 at%. A chip with the Sn-Sb BSM was attached to a Ag plated Cu lead frame. The microstructure evolution was investigated after die bonding at 330 ℃, die bonding and isothermal heat treatment at 330 ℃ for 5 min and wire bonding at 260 ℃, respectively. At the interface between the chip and lead frame, Ni3Sn4 and Ag3Sn intermetallic compounds (IMCs) layers and pure Sn regions were confirmed after die bonding. When the isothermal heat treatment is conducted, pure Sn regions disappear at the interface because the Sn is consumed to form Ni3Sn4 and Ag3Sn IMCs. After the wire bonding process, the interface is composed of Ni3Sn4, Ag3Sn and (Ag,Cu)3Sn IMCs. The Sn-Sb BSM had a high maximum shear strength of 78.2 MPa, which is higher than the required specification of 6.2 MPa. In addition, it showed good wetting flow.

Metallurgical Reaction Properties between In-15Pb-5Ag Solder and Zu-Ni Surface Finish (In-l5Pb-5Ag 솔더와 Au/Ni 층과의 반응 특성)

  • 이종현;엄용성;최광성;최병석;윤호경;박흥우;문종태
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.183-188
    • /
    • 2002
  • With the contact pad consisted of $0.5{\mu}{\textrm}{m}$ $Au/5{\mu}{\textrm}{m}$ Ni/Cu layers on a conventional ball grid array(BGA) substrate, metallurgical reaction properties between the pad and In-15(wt.%)Pb-5Ag solder alloy were studied after reflow and solid aging. In as-reflow condition, thin AuIn$_2$or Ni$_{28}$In$_{72}$ intermetallic layer was formed at the solder/pad interface according to reflow time. Dissolution of the Au layer into the molten solder was remarkably limited in comparison with eutectic Sn-37Pb alloy. After solid aging of 300 hrs, thickness of In-Ni layer increased to about $2{\mu}{\textrm}{m}$ in the both as-reflow case. It was observed that In atoms diffuse through the AuIn$_2$phase to react with underlaying Ni layer. The metallurgical reaction properties between In-l5Pb-7Ag alloy and Au/Ni surface finish were analysed to result in suppression of Au-embrittlement in the solder joints.

  • PDF