• Title/Summary/Keyword: Cu-Ni alloy

Search Result 312, Processing Time 0.026 seconds

Deposition of Cu-Ni films by Magnetron Co-Sputtering and Effects of Target Configurations on Film Properties

  • Seo, Soo-Hyung;Park, Chang-Kyun;Kim, Young-Ho;Park, Jin-Seok
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.1
    • /
    • pp.23-27
    • /
    • 2003
  • Structural properties of Cu-Ni alloy films, such as preferred orientation, crystallite size, in-ter-planar spacing, cross-sectional morphology, and electrical resistivity, are investigated in terms of tar-get configurations that are used in the film deposition by means of magnetron co-sputtering. Two different target configurations are considered in this study: a dual-type configuration in which two separate tar-gets (Cu and Ni) and different bias types (RF and DC) are used and a Ni-on-Cu type configuration in which Ni chips are attached to a Cu target. The dual-type configuration appears to have some advantages over the Ni-on-Cu type regarding the accurate control of atomic composition of the deposited Cu-Ni alloy. However, the dual-type-produced film exhibits a porous and columnar structure, the relatively large internal stress, and the high electrical resistivity, which are mainly due to the relatively low mobility of adatoms. The affects of thermal treatment and deposition conditions on the structural and electrical properties of dual-type Cu-Ni films are also discussed.

A Study on the Electrical and Optical Properties of SnO2/Cu(Ni)/SnO2 Multi-Layer Structures Transparent Electrode According to Annealing Temperature (열처리 온도에 따른 SnO2/Cu(Ni)/SnO2 다층구조 투명전극의 전기·광학적 특성)

  • Jeong, Ji-Won;Kong, Heon;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.2
    • /
    • pp.134-140
    • /
    • 2019
  • Oxide ($SnO_2$)/metal alloy (Cu(Ni))/oxide ($SnO_2$) multilayer films were fabricated using the magnetron sputtering technique. The oxide and metal alloy were $SnO_2$ and Ni-doped Cu, respectively. The structural, optical, and electrical properties of the multilayer films were investigated using X-ray diffraction (XRD), ultraviolet-visible (UV-vis) spectrophotometry, and 4-point probe measurements, respectively. The properties of the $SnO_2/Cu(Ni)/SnO_2$ multilayer films were dependent on the thickness and Ni doping of the mid-layer film. Since Ni atoms inhibit the diffusion and aggregation of Cu atoms, the grain growth of Cu is delayed upon Ni addition. For $250^{\circ}C$, the Haccke's figure of merit (FOM) of the $SnO_2$ (30 nm)/Cu(Ni) (8 nm)/$SnO_2$ (30 nm) multilayer film was evaluated to be $0.17{\times}10^{-3}{\Omega}^{-1}$.

Effect of gadolinium and boron addition on the texture development and magnetic properties of 23Cr-10NiCu duplex stainless steels

  • Baik, Youl;Kang, Bo Kyeong;Choi, Yong;Woo, Wan Chuck
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1887-1892
    • /
    • 2021
  • The effect of gadolinium and boron on the texture development and magnetic properties of the texture controlled 23Cr-10NiCu duplex stainless steels were studied to develop a high performance neutron and electromagnetic shielding material. The 23Cr-10NiCu base alloy is composed of 60% of austenite and 40% of ferrite, whereas, the 23Cr-10NiCu-0.5Gd-0.8B modified alloy is composed of 66% of austenite, 27% of ferrite and 7% of CrFeB intermetallic compounds. The gadolinium and boron addition to the 23Cr-10NiCu base alloy increased mechanical properties. Microstructure observation showed that the small addition of 0.5 wt% gadolinium and 0.8 wt% boron to the alloy retarded to form texture at the same hot rolling conditions, and improved the maximum magnetism, residual magnetism and coercive force about 3%, 122% and 120%, respectively.

Studies on Corrosion inhibition of 90Cu10NiFe Alloy by Eco-Friendly Organic Compound ; Sodium Diethyl Dithio Carbamate(NaDDC) (친환경 유기화합물(NaDDC)에 의한 90Cu10NiFe합금의 부식억제 연구)

  • Jung, Gil-Bong;Kim, Doo-Han;Lee, Sung-Do
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.1018-1025
    • /
    • 2011
  • The improved properties of corrosion for 90Cu10NiFe alloy in natural seawater were explained by sodium diethyl dithio carbamate(NaDDC), namely organic compound, which is reagent for heavy metal extractions of waste water. The efficiency of NaDDC as corrosion inhibitor for 90Cu10NiFe alloy has been investigated in seawater after immersion in various concentrations of NaDDC solutions for 12~36hrs at pH 8.2 by weight loss test and electrochemical techniques including potentiodynamic polarization and SEM-EDS measurements. The results showed that the corrosion resistance of 90Cu10NiFe alloy improves with the increasing concentration of NaDDC but it did not improves with increasing time any more, so the highest inhibition efficiency was 93% at 100mg/L, 36hrs. The results obtained from weight losses and corrosion rates in polarization curve measurements were in good agreement. Therefore, it showed that NaDDC is a good inhibitor for copper corrosion of 90Cu10NiFe alloy.

Electrochemical Corrosion Behaviors of Amorphous $Zr_{65}Al_8Ni_{15}Cu_{12}$ Alloy (비정질 $Zr_{65}Al_8Ni_{15}Cu_{12}$ 금속합금의 전기화학적 부식 특성)

  • Kim, Hyun-Goo
    • Journal of Integrative Natural Science
    • /
    • v.2 no.4
    • /
    • pp.233-236
    • /
    • 2009
  • This study was undertaken to measure the electrochemical corrosion of amorphous $Zr_{65}Al_8Ni_{15}Cu_{12}$ (at.%) alloy ribbon under various conditions, including 0.4 mM HCl solution, and for various values of the pH and the immersion time. The corrosion potentials($E_{corr}$) for the amorphous $Zr_{65}Al_8Ni_{15}Cu_{12}$ alloy in 0.4 mM HCl decreased with increasing temperature; the corrosion current density($I_{corr}$) increased with increasing temperature in general. The polarization resistance($R_p$) was inversely proportional to the corrosion rate. While pH=7, 9, 11 was not as sensitive as pH=3, 5, pH=3 was more sensitive for amorphous $Zr_{65}Al_8Ni_{15}Cu_{12}$ alloy than other pHs specially. The change of mass in the 70 mM $H_2SO_4$ solution with immersion time was the greatest in the first 100 h.

  • PDF

Magnetic Properties of Both Ni-W and (Ni-3%W)-Cu Textured Substrates for ReBCO Coated Conductor (고온초전도 박막선재용 Ni-$W_{xat.%}$ 및 (Ni-$W_{3at.%}$)-$CU_{xat.%}$ 이축배향 금속 기판들의 자기적 특성)

  • Song, K.J.;Kim, T.H.;Kim, H.S.;Ko, R.K.;Ha, H.S.;Ha, D.W.;Oh, S.S.;Park, C.;Yoo, S.I.;Joo, J.H.;Kim, M.W.;Kim, C.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.28-29
    • /
    • 2006
  • The magnetic properties of a series of both annealed and as-rolled Ni-$W_y$ alloy tapes with compositions y = 0, 1, 3, and 5 at.%, were studied. To compare with Ni-W alloys, the magnetic properties of a series of both annealed and as-rolled $[Ni_{97at.%}W_{3at.%}]_{100-x}Cu_x$ alloy tapes with compositions x = 0, 1, 3, 5 and 7 at.%, were studied, as well. Both the isothermal mass magnetization M(H) of a series of samples, such as both Ni-W and [Ni-W]-Cu alloy tapes, at different fixed temperatures and M(T) in fixed field, were measured using a PPMS-9 (Quantum Design). The degree of ferromagnetism of Ni-$W_y$ alloys have reduced as W-content y increases. Both the saturation magnetization $M_{sat}$ and Curie temperature $T_c$ decrease linearly with W-content y, and both $M_{sat}$ and $T_c$ go to zero at critical concentration of $y_c$ ~ 9.50 at.% W. The effect of Cu addition on both the saturation magnetization $M_sat$ and Curie temperature $T_c$ decrease linearly with Cu-content x in $[Ni_{97at.%}W_{3at.%}]_{100-x}Cu_x$ alloy tapes with compositions x = 0, 1, 3, 5, and 7 at.%. The results confirm that [Ni-W]-Cu alloy tapes can have much reduced ferromagnetism as Cu-content x increases.

  • PDF

Fatigue Characterization of NiTiCu Shape Memory Alloys (NiTiCu 형상기억합금의 피로특성)

  • Han, Ji-Won;Park, Sung Bum
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.28-33
    • /
    • 2014
  • Recently, the actuator worked by the driving recovery-force of the thermo elastic martensitic transformation of shape memory alloys(SMA) has been studied. This paper presents a study on the fatigue life of shape memory alloy (SMA) actuators undergoing thermally induced martensitic phase transformation under various stress levels. shape memory recoverable stress and strain of Ti-44.5at.%Ni-8at.%Cu alloys were by means of constant temperature tensile tests. Differential scanning calorimetry (DSC) was employed in order to investigate the transformation characteristics of the alloy before the tests. the results were summarized as follows. The martensite inducing stress incerased with the increasing of the Cu-contents. The fatigue life decreased with the increasing of the test load and the Cu-content. The data acquired will be very useful during the design process of an SMA NiTiCu element as a functional part of an actuator.

Effect of Ni or Cu content on Microstructure and Mechanical Properties of Solution Strengthened Ferritic Ductile Cast Iron (고용강화 페라이트계 구상흑연주철의 미세조직 및 기계적 성질에 미치는 Ni 및 Cu의 영향)

  • Bang, Hyeon-Sik;Kim, Sun-Joong;Song, Soo-Young;Kim, Min-Su
    • Journal of Korea Foundry Society
    • /
    • v.41 no.5
    • /
    • pp.411-418
    • /
    • 2021
  • In order to experimentally investigate the effect of Ni or Cu addition on microstructure and mechanical properties of high Si Solution Strengthened Ferritic Ductile cast Iron (SSF DI), a series of lab-scale sand casting experiment were conducted by changing initial concentration of Ni up to 3.0wt% or Cu up to 0.9wt% in the alloy. It was found that increase in Ni or Cu content in the alloy leads to increase in strength properties and hardness as well as decrease in ductility. The higher Ni or Cu content the SSF DI has, the higher fraction of pearlite was observed. At similar levels of Ni or Cu contents in the alloy, higher pearlite area fraction was observed in the Cu-containing SSF DI than that in the Ni-containing SSF DI. When the effect of the microstructure on the mechanical properties of Ni-containing SSF DI was considered, Ni-containing SSF DI was found to have excellent strength and hardness as well as good elongation when the pearlite fraction was controlled less than 10%. As the pearlite fraction in the Ni-containing SSF DI exceeds 10%, however, it shows drastic decrease in elongation. Meanwhile, gradual increase in strength and hardness, and decrease in elongation with respect to increase in pearlite fraction were observed in Cu-containing SSF DI. The different microstructure-mechanical property relationships between Ni-containing and Cu-containing SSF DI were due to the combined effect of the relatively weak pearlite stabilizing effect of Ni compared to that of Cu in high Si SSF DI, and matrix strengthening effect caused by the different amounts of those alloying elements required for similar pearlite fraction.

Microstructure and Mechanical Properties of Al-Ni-Mm-(Cu, Fe) Alloys Hot-Extruded from Gas-Atomized Powders (가스분사 분말로부터 고온 압출된 Al-Ni-Mm-(Cu, Fe)합금들의 미세구조 및 기계적 성질)

  • Kim, Hye-Sung
    • Korean Journal of Materials Research
    • /
    • v.16 no.2
    • /
    • pp.137-143
    • /
    • 2006
  • The effects of Cu and Fe additions on the thermal stability, microstructure and mechanical properties of $Al_{85}-Ni_{8.5}-Mm_{6.5},\;Al_{84}-Ni_{8.5}-Mm_{6.5}Cu_1,\;Al_{84}-Ni_{8.5}-M_{m6.5}Fe_1$ alloys, manufactured by gas atomization, degassing and hot-extrusion were investigated. Gas atomization, with a wide super-cooled liquid region, allowed the alloy powders to exhibit varying microstructure depending primarily on the powder size and composition. Al hotextruded alloys consisted of homogeneously-distributed fine-grained fcc-Al matrix and intermetallic compounds. A substitution of 1 at.% Al by Cu increased the thermal stability of the amorphous phase and produced alloy microstructure with smaller fcc-Al grains. On the other hand, the same substitution of 1 at.% Al by Fe decreased the stability of the amorphous phase and produced larger fcc-Al grains. The formation of intermetallic compounds such as $Al_3Ni,\;Al_{11}Ce_3\;and\;Al_{11}La_3$ was suppressed by the addition of Cu or Fe. Among the three alloys examined, the highest Vickers hardness and compressive strength were obtained for $Al_{84}-Ni_{8.5}-M_{m6.5}Cu_1$ alloy, and related to the finest fcc-Al grain size attained from increased thermal stability with Cu addition.

Mathematical Modeling on Electrodeposition of Compositionally Modulated Cu-Ni Alloy (전기화학적 방법에 의한 Cu-Ni 다층박막합금의 수학적 모델링)

  • 박경완;이철경;손헌준
    • Journal of the Korean institute of surface engineering
    • /
    • v.27 no.4
    • /
    • pp.223-233
    • /
    • 1994
  • It is well known that compositionally modulated Cu-Ni alloy can be produced by an electrochemical method in Ni sulfate solution containing trace amount of Cu. a mathematical model is presented to describe the current distribution and weight percent of Cu in Ni layer on the rotating disk electrode. The model includes convective-diffusion equation, the Laplace's equation and various overpotentials, and is solved numerically. The thickness of Cu layer is almost uniform whereas the thickness of Ni layer as well as the Ni/Cu weight ratio are increased approaching to the edge of the disk. These results agree well with the experimental values. The ohmic potential drop is suggested as a major cause of a nonuniformity in Ni layer. The optimum plating condition for the fabrication of susperlattice is proposed based on the results of this study.

  • PDF