• Title/Summary/Keyword: Cu-Fe

Search Result 3,040, Processing Time 0.028 seconds

The Effect of Dietary Cu and Fe on the Cd Accumulation in Long-Term Cd Poisoned Rats (장기간 카드뮴에 중독된 흰쥐에서 카드뮴 축적에 대한 식이 구리와 철분의 효과)

  • 김애정
    • Journal of Nutrition and Health
    • /
    • v.29 no.1
    • /
    • pp.70-76
    • /
    • 1996
  • This study was undertaken to investigate the effect on the Cd accumulation in long-term Cd poisoned rats. 40 male weaning Sprague Dawley rats weighting 80-90g were divided into 4 groups (LCuLFeCd : low Cu, Fe and Cd group, ACuLFeCd : adequate Cu, low Fe and Cd group, ACuAFeCd : adequate Cu, adequate Fe and Cd group) according to Cu and Fe levels (Cu 0.5ppm, 8.5ppm : Fe 6ppm, 40ppm) for 12 weeks. There were no significant difference in water intake, feed intake, and body weight gain according to dietary Cu and Fe consumption. But the mean food intake and body weight gain of adequate Fe groups(LCuAFeCd, ACuAFeCd) were higher than those of deficient Fe groups (ACuLFeCd, LCuFeCd)in long-term Cd poisoned rats. The mean Cd levels of serum, liver, kidney, and urine in ACuAFeCd group were lower than those of Cu and /or Fe deficient groups. But the mean fecal Cd excretion of ACuAFeCd group was higher than that of Cu and/or Fe deficient groups. And the mean Cd retention amount of ACuAFeCd group was lower than those of Cu and/or Fe deficinet groups. In conclusion, these results provide an evidence that adequate Cu and Fe intakes can decrease Cd accumulation in rats. Therefore, in the point of increasing environmental Cd contamination, adequate Cu and Fe intakes must be suggested to prevent Cd accumulations.

  • PDF

Study of Mechanically Alloyed Nano Cu-Fe Particles With a Hetero-Structure (헤테로 구조 Cu-Fe 나노분말의 제조 연구)

  • Uhm, Y.R.;Lee, H.M.;Rhee, C.K.
    • Journal of Powder Materials
    • /
    • v.14 no.2 s.61
    • /
    • pp.97-100
    • /
    • 2007
  • The magnetic alloys of Cu-Fe ($Cu_{50}Fe_{50},\;Cu_{80}Fe_{20}\;and\;Cu_{90}Fe_{10}$) were prepared by a mechanical alloying method and their structural and magnetic behaviors were examined by X-ray diffraction and Mossbauer spectra. The magnetization curves did not distinctly show the saturation at 70 kOe for the concentrated alloys of $Cu_{80}Fe_{20}\;and\;Cu_{90}Fe_{10}$. The Mossbauer spectrum of $Cu_{80}Fe_{20}$ at room temperature shows one Lorentzian line of the paramagnetic phase, whereas the Mossbauer spectrum of $Cu_{90}Fe_{10}$ consists of sextet Lorentzian line at room temperature and a centered doublet line. The Mossbauer spectra of $Cu_{90}Fe_{10}$ measured in the temperature ranges from 13 to 295 K, implies that $Cu_{90}Fe_{10}$ to consists of two magnetic phases. One superimposed sextet corresponds to the ferromagnetic iron in Cu and the other one indicates the superparamagnetic iron rich phase.

Exchange Bias Field and Coercivity of [NiFe/NiFeCuMo/NiFe]/FeMn Multilayers ([NiFe/NiFeCuMo/NiFe]/FeMn 다층박막의 교환결합력과 보자력에 관한 특성 연구)

  • Choi, Jong-Gu;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.4
    • /
    • pp.132-135
    • /
    • 2011
  • The exchange bias field ($H_{EX}$) and the coercivity ($H_C$) variation and change depending on the thickness of intermediately super-soft magnetic NiFeCuMo layer with different thickness of the bottom NiFe layer were investigated. The $H_{EX}$ of triple pinned NiFe(4 nm)/NiFeCuMo($t_{NiFeCuMo}$= 1 nm)/NiFe(4 nm)/FeMn multilayer has the maximum value more less than one of single pinned NiFe(8 nm)/FeMn layer. If NiFeCuMo layer is inserted each into between the pinned and free NiFe layers, we can be used as GMR-SV device for a bio-sensor that has improved magnetic sensitivity.

The Effect of Systemic Iron Level on the Transport and Distribution of Copper to the Brain (체내 철 수준이 뇌로의 구리 이동과 분포에 미치는 영향)

  • Choi, Jae-Hyuck;Park, Jung-Duck;Choi, Byung-Sun
    • Toxicological Research
    • /
    • v.23 no.3
    • /
    • pp.279-287
    • /
    • 2007
  • Copper (Cu) is an essential trace element indispensable for brain development and function; either excess or deficiency in Cu can cause brain malfunction. While it is known that Cu and Fe homeostasis are strictly regulated in the brain, the question as to how systemic Fe status may influence brain Cu distribution was poorly understood. This study was designed to test the hypothesis that dietary Fe condition affects Cu transport into the brain, leading to an altered brain distribution of Cu. Rats were divided into 3 groups; an Fe-deficient (Fe-D) group which received an Fe-D diet ($3{\sim}5 mg$ Fe/kg), a control group that was fed with normal diet (35mg Fe/kg), and an Fe-overload group whose diet contained an Fe-O diet (20g carbonyl Fe/kg). Following a 4-week treatment, the concentration of Cu/Fe in serum, CSF (cerebrospinal fluid) and brain were determined by AAS, and the uptake rates of Cu into choroids plexus (CP), CSF, brain capillary and parenchyma were determined by an in situ brain perfusion, followed by capillary depletion. In Fe-D and Fe-O, serum Fe level decreased by 91% (p<0.01) and increased by 131% (p<0.01), respectively, in comparison to controls. Fe concentrations in all brain regions tested (frontal cortex, striatum, hippocampus, mid brain, and cerebellum) were lower than those of controls in Fe-D rats (p<0.05), but not changed in Fe-O rats. In Fe-D animals, serum and CSF Cu were not affected, while brain Cu levels in all tested regions (frontal cortex, striatum, hippocampus, mid brain, and cerebellum) were significantly increased (p<0.05). Likewise, the unidirectional transport rate constants $(K_{in})$ of Cu in CP, CSF, brain capillary and parenchyma were significantly increased (p<0.05) in the Fe-D rats. In contrast, with Fe-O, serum, CSF and brain Cu concentrations were significantly decreased as compared to controls (p<0.05). Cu transport was no significant change of Cu transport of serum in Fe-O rats. The mRNA levels of five Cu-related transporters were not affected by Fe status except DMT1 in the CP, which was increased in Fe-D and decreased in Fe-O. Our data suggest that Cu transport into brain and ensuing brain Cu levels are regulated by systemic Fe status. Fe deficiency appears to augment Cu transport by brain barriers, leading to an accumulation of Cu in brain parenchyma.

The Effect of Fe and Cu on the Pb Toxicity in Rats (Pb 중독에 Fe, Cu가 흰쥐의 체내에 미치는 효과에 관한 연구)

  • 김애정
    • Journal of Nutrition and Health
    • /
    • v.26 no.6
    • /
    • pp.743-757
    • /
    • 1993
  • This study was undertaken to investigate the effects of dietary Fe and Cu levels on Pb accumulation of Pb poisoned rats. 80 male Sprague weaning Dawley rate weighing 80-90g were divided into 8 groups(Pb groups: LFLCPb-low Fe, low Cu and Pb group, LFACPB-low Fe, adequate Cu and Pb group, AFLCPb-adequate Fe, low Cu and Pb group, AFACPb-adequate Fe, adequate Cu and Pb group, without Pb gorups: LFLC-low Fe, low Cu and without Pb grooup, LFAC-low Fe, adequate Cu and without Pb group, AFLC-adequate Fe, low Cu and without Pb group, AFAC-adequate Fe, adequate Cu and without Pb group) according to Pb administration (0, 500ppm in drinking water) and Fe and Cu levels(Fe :6ppm, 40ppm, Cu : 0.5ppm, 0.8ppm) for 12 weeks. The food intake, body weight, gain, and FER of Pb groups were significantly lower than those of without Pb groups(p<0.01, p<0.001, p<0.001). The weights of liver in Pb groups were significantly lower than that of adequate Fe and Cu group in without Pb group(AFAC) (p<0.001). The Cu contents of liver in Pb groups were significantly lower than that of AFAC (p<0.01). The liver Pb accumulation of LFLCPb was significantly higher than those of LFACPb, AFLCPb, AFACPb(p<0.05). The serum Pb content of LFLCPb was significantly higher than those of LFACPb, AFLCPb, AFACPb(p<0.05). The levels of Hb, and Hct, of 12 weeks in Pb poisoned rats were lower than those of 8 weeks, in other words, long term Pb poisoned rats were affected more serious on hematoopoiesis. The fecal excretions of Fe and Cu in Pb groups were significantly higher than those of without Pb groups(p<0.001, p<0.001). The urinary Fe and Cu excretions were significantly higher than those of AFAC(p<0.001, p<0.001). There were significant differences between Pb groups and without Pb groups according to dietary Fe and Cu levels. So, dietary levels of adequate Fe and Cu were effective to reduce Pb accumulation in rats. It were showed that the decrease of food intake, FER, body weight gain, serum level of Fe and Cu in Pb groups than those of without Pb groups. And the increase of liver Pb accumulation, serum Pb levels, fecal and urinary Fe and Cu excretions were showed in Pb groups than those of without Pb groups by long term lead poisoning. Otherwise, adequate Fe and Cu administrations in Pb groups have preventive effects on the Pb poisoned rats.

  • PDF

Magnetostriction and Stress of NiFeCr/(Cu/Co90Fe10)×N/NiFeCr Multilayer Films (NiFeCr/(Cu/Co90Fe10)×N/NiFeCr 다층박막의 자기변형과 응력에 관한 연구)

  • Jo, Soon-Chul
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.1
    • /
    • pp.8-12
    • /
    • 2010
  • The magnetostriction and stress of multilayer $NiFeCr/(Cu/Co_{90}Fe_{10}){\times}N/NiFeCr$ films were investigated. As the number of Cu $15{\AA}$/CoFe $15{\AA}$ bilayers was increased, the saturation magnetostriction decreased from $-5.6\times10^{-6}$ at 2 bilayers to $-8.5\times10^{-6}$ at 20 bilayers. A change of CoFe thickness from 10 to $20{\AA}$ caused a decrease in the magnitude of tensile stress from 980MPa to 590MPa as the number of Cu $15{\AA}$/CoFe $15{\AA}$ bilayers increased from 2 to 20. The maximum magnetostrictive anisotropy field that could be developed due to nonzero magnetostriction and stress is calculated to be 135.7 Oe when the number of Cu $15{\AA}$/CoFe $15{\AA}$ bilayers is 10.

A Study on Cu-Fe Multifilamentary Composites Produced by in situ Process (in situ법(法)에 의한 Cu-Fe계(系) 다섬유상(多纖維狀) 복합재료제조(複合材料製造)에 관한 연구(硏究))

  • Shur, S.J.;Park, H.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.4 no.2
    • /
    • pp.9-18
    • /
    • 1991
  • Among the many maunfactured processes of producing multi filamentary composites, in situ process is widely used owing tv its simplicity and easyness of mass production. In this study, the mechanical and electromagnetic properties of Cu-Fe composite materials was investigated. The tensile strength of the Cu-Fe wires increased as the Fe content and reduction ratio were increased. The Cu-30 wt%Fe composites had the best properties in terms of figure merits compared to the other Cu-Fe composites made in this study or the commercially manufactured 6/1 ACSR cables of Cu cable. The coercivity was decreased by increasing Fe content, but the squareness was increased greatly. As increasing reduction ratio, the coercivity and squareness increased up to the maximum points, and then decreased. For example, the maximum values were obtained at $0.09mm{\phi}$ for Cu-30 wt%Fe composites and at $0.066mm{\phi}$ for Cu-45 wt%Fe composites. The magnetic property of Cu-Fe wires produced by precipitation treatment was higher than that of Cu-Fe wires produced by thermomechanical treatment. By annealing Cu-Fe wires after drawing process, the coercivity, remanence and squareness were improved.

  • PDF

A study on the magnetoresistive characteristics of ${[Ni/Fe/Cu]}_{20}$ multilayers (${[Ni/Fe/Cu]}_{20}$ 다층 박막의 자기저항 특성에 관한 연구)

  • 이후산;민경익;주승기
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.4
    • /
    • pp.289-292
    • /
    • 1993
  • [Ni/Fe/Cu] and [Fe/Ni/Fe/Cu] multilayers were prepared with three gun rf-magnetron sputtering, and dependence of magnetoresistance on the Ni IFe thickness ratio was investigated. Vaccum annealing was tried to invetigated the effect of annealing. Oscillation of magnetoresistance on the Cu spacer thickness was dbserved in these two kinds of multilayers. When the thickness of Fe inserted into the Ni/Cu interface was about $3\;\AA$. the maximum value of magnetoresistance(13 %) could be observed. In a sample of $1~2\;\AA$ Fe thickness, saturation field decreased significantly, while magnetoresistace decreased slightly in comparison with the sample of $3\;\AA$ Fe. In ${[Cu(23\;\AA)/Fe(1\;\AA)/Ni(18\;\AA)/Fe(1\;\AA)]}_{20}/Fe(80\;\AA)/Si$, 6 % magnetoresistance with 100 Oe saturation field could be obtained. No appreciable change in magnetoresistance and saturation field could be observed by low temperature annealing. Formation of Ni-Fe alloy was not confinred.

  • PDF

MAGNETORESISTANCE OF NiFeCo/Cu/NiFeCo/FeMn MULTILAYERED THIN FILMS WITH LOW SATURATION FIELD

  • Bae, S.T.;Min, K.I.;Shin, K.H.;Kim, J.Y.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.570-574
    • /
    • 1995
  • Magnetoresistance of NiFeCo/Cu/NiFeCo/FeMn uncoupled exchange biased sandwiches has been studied. The magnetoresistance change ratio, ${\Delta}R/R_{s}$ showed 4.1 % at a saturation field as low as 11 Oe in $Si/Ti(50\;{\AA})/NiFeCo(70\;{\AA})/Cu(23\;{\AA})/NiFeCo(70\;{\AA})/FeMn(150\;{\AA})/Cu(50\;{\AA})$ spin valve structure. In this system, the magnetoresistance was affected by interlayer material and thickness. When Ti and Cu were used as the interlayer material in this structure, maximum magnetoresistance change ratio were 0.32 % and 4.1 %, respectively. 6.1 % MR ratio was obtained in $Si/Ti(50\;{\AA})/NiFeCo(70\;{\AA})/Cu(15\;{\AA})/NiFeCo(70\;{\AA})/FeMn(150\;{\AA})/Cu(50\;{\AA})$ spin valve structure. The magnetoresistance change ratio decreased monotonically as the interlayer thickness increased. It was found that the exchange bias field exerted by FeMn layer to the adjacent NiFeCo layer was ~25 Oe, far smaller than that reported in NiFe/Cu/NiFe/FeMn spin valve structure(Dieny et. al., ~400 Oe). The relationship between the film texture and exchange anisotropy ha been examined for spin valve structures with Ti, Cu, or non-buffer layer.

  • PDF

Effects of Ultrathin Co Insertion Layer on Magnetic Anisotropy and GMR Properties of NiFe/Cu/Co Spin Valve Thin Films (NiFe/Cu 계면에 삽입된 Co 층이 NiFe/Cu/Co 스핀밸브 박막의 거대자기저항 특성과 자기이방성에 미치는 영향)

  • 김형준;조권구;주승기
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.5
    • /
    • pp.251-255
    • /
    • 1999
  • NiFe(60 $\AA$)/Co(0$\AA$$\leq$x$\AA$$\leq$15$\AA$)/Cu(60$\AA$)/Co(30$\AA$) spin valve thin films were prepared on 4$^{\circ}$ tilt-cut Si(111) substrates with a 50 $\AA$ thick Cu underlayer without applying any external magnetic field during the deposition, and the effects of inserted ultrathin Co layer on magnetic anisotropy and GMR properties of the NiFe(60 $\AA$)/Cu(60$\AA$)/Co(30$\AA$) spin valves were investigated. As the ultrathin Co layer was inserted into the NiFe/Cu interface of the spin valves, GMR ratio was increased from about 1.5% to 3.5%, and the easy axis of NiFe(60 $\AA$) layer was rotated by 90$^{\circ}$. Accordingly, it was aligned along the same direction with the easy axis of Co(30 $\AA$)layer. Therefore, squared R-H curves was obtained in the spin valves, which is favorable properties for the digital GMR devices such as MRAM. In order to investigate the change of magnetic anisotropy of NiFe layer of the spin valves in more details,XRD measurement was performed using NiFe(500 $\AA$) and NiFe(500 $\AA$)/Co(10 $\AA$) thin films on the same templates. Strong (220) NiFe peak was observed in both films regardless of the inserted Co layer, so it was thought that the variation of magnetic anisotropy of NiFe layer is from the interface effect, the change of interface from NiFe/Cu to NiFe/Co, rather than the volume effect such as the change of magnetocrystalline effect.

  • PDF