References
- Aisen, P. (1994). The transferrin receptor and the release of iron from transferring. Adv. Exp. Med. Biol., 356, 31-40 https://doi.org/10.1007/978-1-4615-2554-7_4
- Basun, H., Forssell, L.G., Wetterberg, L. and Winblad, B. (1991). Metals and trace elements in plasma and cerebrospinal fluid in normal aging and Alzheimer's disease. J. Neural Transm. Park. Dis. Dement. Sect., 3, 231-258
- Bellingham, S.A., Lahiri, D.K., Maloney, B., La Fontaine, S., Multhaup, G. and Camakaris, J. (2004). Copper depletion down-regulates expression of the Alzheimer's disease amyloid-beta precursor protein gene. J. Biol. Chem., 279, 20378-20386 https://doi.org/10.1074/jbc.M400805200
- Bieri, J.G., Stoewsand, G.S., Briggs, G.M., Phillips, R.W., Woodard, J.C. and Knapka, J.J. (1977). Report of the american institute of nurtition ad hoc committee on standards for nutritional studies. J. Nutr., 107, 1340-1348 https://doi.org/10.1093/jn/107.7.1340
- Cherny, R.A., Atwood, C.S., Xilinas, M.E., Gray, D.N., Jones, W.D., McLean, C.A., Barnham, K.J., Volitakis, I., Fraser, F.W., Kim, Y., Huang, X., Goldstein, L.E., Moir, R.D., Lim, J.T., Beyreuther, K., Zheng, H., Tanzi, R.E., Masters, C.L. and Bush, A.I. (2001). Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer's disease transgenic mice. Neuron, 30, 665-676 https://doi.org/10.1016/S0896-6273(01)00317-8
- Collins, J.F. (2006). Gene chip analyses reveal differential genetic responses to iron deficiency in rat duodenum and jejunum. Biol. Res., 39, 25-37
- Collins, J.F., Franck, C.A., Kowdley, K.V. and Ghishan, F.K. (2005). Identification of differentially expressed genes in response to dietary iron deprivation in rat duodenum. Am. J. Physiol. Gastrointest. Liver Physiol., 288, G964-G971 https://doi.org/10.1152/ajpgi.00489.2004
- Crowe, A. and Morgan, E.H. (1996a). Iron and copper interact during their uptake and deposition in the brain and other organs of developing rats exposed to dietary excess of the two metals. J. Nutr., 126, 183-194 https://doi.org/10.1093/jn/126.1.183
-
Crowe, A. and Morgan, E.H. (1996b). The effects of iron loading and iron deficiency on the tissue uptake of
$^{64}Cu$ during development in the rat. Biochim. Biophys. Acta, 1291, 53-59 https://doi.org/10.1016/0304-4165(96)00044-X - Danks, D.M. (2004). Disorders of copper transport, in The metabolic and molecular basis of inherited disease (Scriver, C.R., Beaudet, A.L., Sly, W.M. and Valle, D., Eds.). McGraw-Hill, New York, pp. 2211-2235
- Deane, R., Zheng, W. and Zlokovic, B.V. (2004). Brain capillary endothelium and choroid plexus epithelium regulate transport of transferrin-bound and free iron into the rat brain. J. Neurochem., 88, 813-820 https://doi.org/10.1046/j.1471-4159.2003.02221.x
- Deibel, M.A., Ehmann, W.D. and Markesbery, W.R. (1996). Copper, iron, and zinc imbalances in severely degenerated brain regions in Alzheimer's disease: possible relation to oxidative stress. J. Neurol. Sci., 143, 137-142 https://doi.org/10.1016/S0022-510X(96)00203-1
- Ece, A., Uyanik, B.S., Iscan, A., Ertan, P. and Yigitoglu, M.R. (1997). Increased serum copper and decreased serum zinc levels in children with iron deficiency anemia. Biol. Trace Elem. Res., 59, 31-9 https://doi.org/10.1007/BF02783227
- Erikson, K.M., Pinero, D.J., Connor, J.R. and Beard, J.L. (1997). Regional brain iron, ferritin and transferrin concentrations during iron deficiency and iron repletion in developing rats. J. Nutr., 127, 2030-2038
- Erikson, K.M., Syversen, T., Steinnes, E. and Aschner, M. (2004). Globus pallidus: a target brain region for divalent metal accumulation associated with dietary iron deficiency. J. Nutr. Biochem., 15, 335-341 https://doi.org/10.1016/j.jnutbio.2003.12.006
- Gurgoze, M.K., Olcucu, A., Aygun, A.D., Taskin, E. and Kilic, M. (2006). Serum and hair levels of zinc, selenium, iron,and copper in children with iron-deficiency anemia. Biol. Trace Elem. Res., 111, 23-29 https://doi.org/10.1385/BTER:111:1:23
- Hartmann, H.A. and Evenson, M.A. (1992). Deficiency of copper can cause neuronal degeneration. Med. Hypotheses, 38, 75-85 https://doi.org/10.1016/0306-9877(92)90162-6
- Lash, A. and Saleem, A. (1995). Iron metabolism and its regulation. A Review. Ann. Clin. Lab. Sci., 25, 20-30
- Linder, M.C. and Hazegh-Azam, M. (1996). Copper biochemistry and molecular biology. Am. J. Clin. Nutr., 63, 797S- 811S
- Linder, M.C., Zerounian, N.R., Moriya, M. and Malpe, R. (2003). Iron and copper homeostasis and intestinal absorption using the Caco2 cell model. Biometals, 16, 145-160 https://doi.org/10.1023/A:1020729831696
- Loeffler, D.A., LeWitt, P.A., Juneau, P.L., Sima, A.A., Nguyen, H.U., DeMaggio, A.J., Brickman, C.M., Brewer, G.J., Dick, R.D., Troyer, M.D. and Kanaley, L. (1996). Increased regional brain concentrations of ceruloplasmin in neurodegenerative disorders. Brain Res., 738, 265-274 https://doi.org/10.1016/S0006-8993(96)00782-2
- Martini, L.A., Tchack, L. and Wood, R.J. (2002). Iron treatment downregulates DMT1 and IREG1 mRNA expression in Caco-2 cells. J. Nutr., 132, 693-696
- Marzullo, L., Tosco, A., Capone, R., Andersen, H.S., Capasso, A. and Leone, A. (2004). Identification of dietary copper- and iron-regulated genes in rat intestine. Gene, 338, 225-233 https://doi.org/10.1016/j.gene.2004.05.021
- Newhouse, I.J., Clement, D.B. and Lai, C. (1993). Effects of iron supplementation and discontinuation on serum copper, zinc, calcium, and magnesium levels in women. Med. Sci. Sports Exerc., 25, 562-571
- Olivares, M., Araya, M., Pizarro, F. and Letelier, A. (2006). Erythrocyte Cu Zn superoxide dismutase activity is decreased in iron-deficiency anemia. Biol. Trace Elem. Res., 112, 213-220 https://doi.org/10.1385/BTER:112:3:213
- Reeves, P.G., Ralston, N.V., Idso, J.P. and Lukaski, H.C. (2004). Contrasting and cooperative effects of copper and iron deficiencies in male rats fed different concentrations of manganese and different sources of sulfur amino acids in an AIN-93G-based diet. J. Nutr., 134, 416-425
- Rodriguez-Matas, M.C., Lisbona, F., Gomez-Ayala, A.E., Lopez-Aliaga, I. and Campos, M.S. (1998). Influence of nutritional iron deficiency development on some aspects of iron, copper and zinc metabolism. Lab. Anim., 32, 298- 306 https://doi.org/10.1258/002367798780559248
- Rossi, L., Arciello, M., Capo, C. and Rotilio, G. (2006). Copper imbalance and oxidative stress in neurodegeneration. Ital. J. Biochem., 55, 212-221
- Smith, Q.R. (1996). Brain perfusion systems for studies of drug uptake and metabolism in the central nervous system. Pharm. iotechnol., 8, 285-307
- Sparks, D.L. and Schreurs, B.G. (2003). Trace amounts of copper in water induce beta-amyloid plaques and learning deficits in a rabbit model of Alzheimer's disease. Proc. Natl. Acad. Sci. USA, 100, 11065-11069
- Squitti, R., Lupoi, D., Pasqualetti, P., Dal Forno, G., Vernieri, F., Chiovenda, P., Rossi, L., Cortesi, M., Cassetta, E. and Rossini, P.M. (2002). Elevation of serum copper levels in Alzheimer's disease. Neurology, 59, 1153-1161 https://doi.org/10.1212/WNL.59.8.1153
- Squitti, R., Pasqualetti, P., Dal Forno, G., Moffa, F., Cassetta, E., Lupoi, D., Vernieri, F., Rossi, L., Baldassini, M. and Rossini. P.M. (2005). Excess of serum copper not related to ceruloplasmin in Alzheimer disease. Neurology, 64, 1040-1046 https://doi.org/10.1212/01.WNL.0000154531.79362.23
- Strausak, D., Mercer, J.F., Dieter, H.H., Stremmel, W. and Multhaup, G. (2001). Copper in disorders with neurological symptoms: Alzheimer's, Menkes, and Wilson diseases. Brain Res. Bull., 55, 175-185 https://doi.org/10.1016/S0361-9230(01)00454-3
- Takasato, Y., Rapoport, S.I. and Smith, Q.R. (1984). An in situ brain perfusion technique to study cerebrovascular transport in the rat. Am. J. Physiol., 247, H484-H493
- Tennant, J., Stansfield, M., Yamaji, S., Srai, S.K. and Sharp, P. (2002). Effects of copper on the expression of metal transporters in human intestinal Caco-2 cells. FEBS Lett., 527, 239-244 https://doi.org/10.1016/S0014-5793(02)03253-2
- Tomas, C. and Oates, P.S. (2003). Copper deficiency increases iron absorption in the rat. Am. J. Physiol. Gastrointest. Liver Physiol., 285, G789-G795
- Turnlund, J.R. (1998). Human whole-body copper metabolism. Am. J. Clin. Nutr., 67, 960S-964S
- Yu, S., West, C.E. and Beynen, A.C. (1994). Increasing intakes of iron reduce status, absorption and biliary excretion of copper in rats. Br. J. Nutr., 71, 887-895 https://doi.org/10.1079/BJN19940194
- Yokoi, K., Kimura, M. and Itokawa, Y. (1990). Effect of dietary tin deficiency on growth and mineral status in rats. Biol. Trace Elem. Res., 24, 223-231 https://doi.org/10.1007/BF02917210
- Yokoi, K., Kimura, M. and Itokawa, Y. (1991). Effect of dietary iron deficiency on mineral levels in tissues of rats. Biol. Trace Elem. Res., 29, 257-265 https://doi.org/10.1007/BF03032682
- Van Nhien, N., Khan, N.C., Yabutani, T., Ninh, N.X., Kassu, A., Huong, B.T., Do, T.T., Motonaka, J. and Ota, F. (2006). Serum levels of trace elements and iron-deficiency anemia in adult Vietnamese. Biol. Trace Elem. Res., 111, 1-9 https://doi.org/10.1385/BTER:111:1:1
- Waggoner, D.J., Bartnikas, T.B. and Gitlin, J.D. (1999). The role of copper in neurodegenerative disease. Neurobiol. Dis., 6, 221-230 https://doi.org/10.1006/nbdi.1999.0250
- Zheng, W. (2001). Toxicology of choroid plexus: Special reference to metal-induced neurotocities. Microsc. Res. Tech., 52, 89-103 https://doi.org/10.1002/1097-0029(20010101)52:1<89::AID-JEMT11>3.0.CO;2-2