• Title/Summary/Keyword: Cu-Co-Si alloy

Search Result 38, Processing Time 0.029 seconds

Hardness and Electrical Conductivity Changes according to Heat Treatment of Cu-1.6Co-0.38Si Alloy (Cu-1.6Co-0.38Si 합금의 열처리에 따른 경도 및 전기전도도의 변화)

  • Kwak, Wonshin;Lee, Sidam
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.5
    • /
    • pp.226-231
    • /
    • 2020
  • The Cu-Co-Si alloy shows high strength by forming precipitates by aging precipitation heat treatment of supersaturated solid solution treated with solution treatment such as Cu-Ni-Si alloy, and the Co2Si precipitated phase is dispersed in the copper matrix. The effect of aging treatment on the microstructure, mechanical and electrical properties of Cu-Co-Si alloys for electronic devices was investigated. As a results of SEM/EDS analysis, it was found that Co2Si precipitates of 30~300 nm size were distributed in grains. By performing the double aging treatment, it was possible to improve the strength and electrical conductivity by dispersing the fine precipitate evenly.

Changes in Mechanical Properties according to Solid Solution Treatment of Cu-1.6%Co-0.38%Si Alloy (Cu-1.6%Co-0.38%Si 합금의 용체화처리에 따른 기계적 성질의 변화)

  • Kwak, Wonshin;Lee, Sidam
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.6
    • /
    • pp.277-283
    • /
    • 2020
  • Cu-Co-Si based alloy has a strengthening mechanism for Co2Si intermetallic compounds deposited on the copper matrix after aging treatment and the solution treatment has a key influence on the strength and electrical conductivity of the final products. In this paper, the Cu-1.6%Co-0.38%Si alloy was fixed at the time and the solution treatment temperature was set at a temperature in the range of 800 to 950℃, and the change in mechanical properties was observed by fixing the temperature at 950℃ and changing the time. The microstructure was observed using an electron microscope and an optical microscope, and the changes in hardness, electrical conductivity, and bending workability after aging treatment were investigated. When the solution treatment time is less than 20 seconds, the solution treatment is not sufficient and the formation of precipitates contributing to the increase in hardness decreases and the hardness decreases after the aging treatment, and in more than 50 seconds, the hardness decreases due to the coarsening of the grains and the bending workability got worse.

Fabrication and characteristics of NbTi superconducting wires with Cu-Si matrix for AC use (Cu-Si 기지금속을 사용한 교류용 초전도선재 제조 및 특성)

  • Ha, D.W.;Oh, S.S.;Oh, B.H.;Kwon, Y.G.;Cho, J.W.;Ryu, K.S.;Han, I.Y.;Baik, H.K.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1165-1167
    • /
    • 1995
  • The Cu-Si alloy has been proposed as a new matrix materal for filamentary Nb-Ti wires in AC use. The Cu-Si alloy shows approprite mechanical and electrical properties, and is economically more favourable than the Cu-Ni alloy matrix used currently. Moreover, the addition of Si to Cu prevents the formation of intermetallic compounds around the filaments. After we investigated resistivity and hardness of Cu-Si alloy as matrix materal, investigated CuSi/NbTi interface reactions and superconductivities of superconducting wires that were made by various heat treatment.

  • PDF

An IRS Study on the Adsorption of Carbonmonoxide on Silica Supported Ni-Cu Alloys (실리카 지지 니켈-구리 합금에서 일산화탄소의 흡착에 관한 IRS 연구)

  • Ahn, Jeong-Soo;Yoon, Koo-Sik;Park, Sang-Youn;Park, Sung-Kyun
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.3
    • /
    • pp.233-243
    • /
    • 2009
  • We have investigated the infrared spectra for CO adsorbed on silica supported nickel(Ni-Si$O_2$), silica supported copper(Cu-Si$O_2$), silica supported nickel-copper alloys(Ni/Cu-Si$O_2$) of several compositions with varying CO pressures(0.2 $torr{\sim}$50 torr) at room temperature and on pumping to vacumn at room temperature within the frequency range of 1500 $cm^{-1}{\sim}2500\;cm^{-1}$. Four bands(2059.6 $cm^{-1},\;{\sim}$2036.5 $cm^{-1},\;{\sim}$ 1868.7 $cm^{-1},\;{\sim}$ 1697.1 $cm^{-1}$) were observed for Ni-Si$O_2$, two bands($\sim$2115.5 $cm^{-1},\;{\sim}$1743.0 $cm^{-1}$) were observed for Cu-Si$O_2$ and five bands(${\sim}2123.2\;cm^{-1}$, 2059.6 $cm^{-1},\;{\sim}$2036.4 $cm^{-1},\;{\sim}$1899.5 $cm^{-1},\;{\sim}$1697.1 $cm^{-1}$) were observed for Ni/Cu-Si$O_2$. These absorption bands correspond with those of the previous reports approximately. The bands below 1800 $cm^{-1}$ were only observed with Ni metal or Ni/Cu alloy crystal plane containing step at room temperature and the ${\sim}1697.1\;cm^{-1}$ bands observed with Ni-Si$O_2$ and Ni/Cu-Si$O_2$ may be ascribed to CO molecule adsorbed on the adsorption sites near step. The bands below 2000 $cm^{-1}$ were rarely observed with Cu metal crystal plane at room temperature and the 1743.0 $cm^{-1}$ bands may be ascribed to CO molecule adsorbed on the adsorption sites near step. The band shifts of adsorbed CO with varing Cu contents from 0 to 0.5 mole fraction at the same CO pressure or at the same pumping time to vacumn were below 21 $cm^{-1}$. and comparatively small than those with other ⅠB metal addition. It may means ligand effect of Cu d electron is small.

Manufactures of dental casting Co-Cr-Mo based alloys in addition to Sn, Cu and analysis of infrared thermal image for melting process of its alloys (Sn 및 Cu를 첨가한 치과 주조용 Co-Cr-Mo계 합금제조 및 용해과정 분석)

  • Kang, Hoo-Won;Park, Young-Sik;Hwang, In;Lee, Chang-Ho;Heo, Yong;Won, Yong-Gwan
    • Journal of Technologic Dentistry
    • /
    • v.36 no.3
    • /
    • pp.141-147
    • /
    • 2014
  • Purpose: Dental casting #Gr I (Co-25Cr-5Mo-3Sn-1Mn-1Si), #Gr II (Co-25Cr-5Mo-5Cu-1Mn -1Si) and #Gr III (Co-25Cr-5Mo-3Sn-5Cu-1Mn-1Si) master alloys of granule type were manufactured the same as manufacturing processes for dental casting Ni-Cr and Co-Cr-Mo based alloys of ingot type. These alloys were analyzed melting processes with heating time of high frequency induction centrifugal casting machine using infrared thermal image analyzer. Methods: These alloys were manufactured such as; alloy design, the first master alloy manufatured using vacuum arc casting machine, melting metal setting in crucible, melting in VIM, pouring in the mold of bar type, cutting the gate and runner bar and polishing. These alloys were put about 30g/charge in the ceramic crucible of high frequency induction centrifugal casting machine and heat, Infrared thermal image analyzer indicated alloys in the crucible were set and operated. Results: The melting temperatures of these alloys measuring infrared thermal image analyzer were decreased in comparison with remanium$^{(R)}$ GM 800+, vera PDI$^{TM}$, Biosil$^{(R)}$ f, WISIL$^{(R)}$ M type V, Ticonium 2000 alloys of ingot type and vera PDS$^{TM}$(Aabadent, USA), Regalloy alloys of shot type. Conclusion: Co-Cr-Mo based alloy in addition to Sn(#Gr I alloy) were decreased the melting temperature with heating time of high frequency induction centrifugal casting machine using infrared thermal image analyzer.

Effects of Alloying Element and Heat-Treatment Condition on the Strength of Squeeze-Casted Al-3.0 wt%Si Alloy (용탕 단조 Al-3.0 wt%Si 합금의 강도에 미치는 합금 원소 및 열처리 조건의 영향)

  • Lee, Hag-Ju;Hwang, Jae-Hyoung;Kwon, Hae-Wook
    • Journal of Korea Foundry Society
    • /
    • v.26 no.6
    • /
    • pp.249-257
    • /
    • 2006
  • The effects of alloying element and the condition of heat-treatment on the strength of squeeze-cast Al-3.0 wt%Si alloy were investigated. The strength of the alloy without grain refinement was increased with increase Cu content upto 3.0 wt% and rather decreased beyond that. The tensile strength of the alloy with grain refinement increased with Cu content upto 3.0 wt% and not changed beyond that. The strength of the alloy without grain refinement increased with the Mg content. The tensile strength with grain refinement increased with the Mg content upto 0.50 wt% and then decreased beyond that. The strength of the grain refined alloy increased by individual and simultaneous additions of Cu and Mg and the maximum strength was obtained with Al-3.0 wt%Si-4.5 wt%Cu-0.50 wt%Mg alloy. The optimum heat-treatment condition for this alloy was obtained.

Magnetic Properties of Nanocrystalline Fe-Co-Cu-Nb-Si-B Alloys (Fe-Co-Cu-Nb-Si-B 초미세결정합금의 자기적 특성연구)

  • 김약연;백종성;서영수;임우영;유성초;이수형
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.2
    • /
    • pp.130-134
    • /
    • 1993
  • The magnetic properties of the amorphous $Fe_{73.5-X}Co_{X}Cu_{1}Nb_{3}Si_{13.5}B_{9}(x=2,\;4)$ alloys, fabricated by a single roll rapid quenching technique and annealed at $400~650^{\circ}C$, have been investigated. The optimum annealing temperature is $550^{\circ}C$ for the amorphous $Fe_{71.5}Co_{2}Cu_{1}Nb_{3}Si_{13.5}B_{9}$ alloy. The properties of the nanocrystalline $Fe_{71.5}Co_{2}Cu_{1}Nb_{3}Si_{13.5}B_{9}$ alloy show the relative permeability of $1.1{\times}10^{4}$ and the coercive force of 0.22 Oe at 1 kHz. When annealed at $600^{\circ}C$, the nanocrystalline $Fe_{69.5}Co_{4}Cu_{1}Nb_{3}Si_{13.5)B_{9}$ alloy shows the relative permeability of $1.0{\times}10^{4}$ and the coercive force of 0.19 Oe at 1 kHz. From the X-ray measurement, it is found that the remarkably improved soft magnetic properties are the effect of the formation of $\alpha$-Fe(Si) grain. By the results of FMR exper-imeIlt, the optimum annealing condition is just below temperature which the peak-to-peak line width of FMR spectrum increase rapidly.

  • PDF

Microstructural Control of Al-Sn Alloy with Addition of Cu and Si (Cu와 Si 첨가에 의한 Al-Sn 합금의 미세조직 제어)

  • Son, Kwang Suk;Park, Tae Eun;Kim, Jin Soo;Kang, Sung Min;Kim, Tae Hwan;Kim, Donggyu
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.3
    • /
    • pp.248-255
    • /
    • 2010
  • The effect of various alloying elements and melt treatment on the microstructural control of Al-Sn metallic bearing alloy was investigated. The thickness of tin film crystallized around primary aluminum decreased with the addition of 5% Cu in Al-Sn alloy, with tin particles being reduced in size by intervening the Ostwald ripening. With the addition of Si in Al-10%Sn alloy, the tin particles were crystallized with eutectic silicon, resulting in uniform distribution of tin particles. With the addition of Cu and Si in Al-Sn alloy, both the tensile strength and yield strength increased, with the increasing rate of yield strength being less than that of tensile strength. Although the Al-10%Sn-7%Si alloy has similar tensile strength compared with Al-10%Sn-5%Cu, the former showed superior abrasion resistance, resulting from preventing the tin particles from movement to the abrasion surface.

The Effect of Sr Addition and Holding Time on Mechanical Property and Electrical Conductivity of Al-10.5%Si-2%Cu Secondary Die-casting Alloys (Al-10.5wt%Si-2wt%Cu 다이 캐스팅용 2차 지금의 기계적 특성과 전기전도도에 미치는 Sr 양과 유지시간의 영향 II)

  • Shin, Sang-Soo;Kim, Myung-Yong;Yeom, Gil-Yong
    • Journal of Korea Foundry Society
    • /
    • v.30 no.6
    • /
    • pp.205-209
    • /
    • 2010
  • This study evaluates the influence of strontium addition and holding time on mechanical properties for Al-10.5wt%Si-2wt%Cu secondary die-casting alloy and the measured electrical conductivity of modified alloys. A general improvement in the mechanical properties of the alloy was observed after adding the strontium. Ultimate tensile strength, elongation and electrical conductivity of modified alloys were improved by increasing strontium content and holding time. From these results, the optimal strontium content and holding time were identified on the mechanical properties of Al-10.5wt%Si-2wt%Cu secondary die-casting alloys.

The Effect of Sr Addition and Holding Time on Microstructure of Al-10.5%Si-2%Cu Secondary Die-casting Alloys (Al-10.5wt%Si-2wt%Cu 다이 캐스팅용 2차 지금의 미세조직에 미치는 Sr의 양과 유지시간의 영향 I)

  • Shin, Sang-Soo;Kim, Myung-Yong;Yeom, Gil-Yong
    • Journal of Korea Foundry Society
    • /
    • v.30 no.5
    • /
    • pp.161-166
    • /
    • 2010
  • In this examination, the effect of Sr addition and holding time on microstructure of Al-10.5wt%Si-2wt%Cu secondary die-casting alloy was investigated. Degree of undercooling was improved with increasing the Sr content in this alloy. Up to 0.02wt%Sr addition, acicular and lamellar eutectic structure was observed in the microstructure. Meanwhile, the eutectic Si was modified toward the fine fibrous form by increasing Sr content with more than 0.03wt% and holding time of the melt. The well- modified alloys showed decreased eutectic silicon size from 3.25 ${\mu}m$ to less than 0.8 ${\mu}m$. From these results, the optimal strontium content and holding time were identified on the Al-10.5wt%Si-2wt%Cu secondary die-casting alloy.