• Title/Summary/Keyword: Cu-Ag alloy

Search Result 169, Processing Time 0.024 seconds

Effects of Strain Rate and Temperature on Fracture Strength of Ceramic/Metal Joint Brazed with Ti-Ag-Cu Alloy

  • Seo, Do-Won;Lim, Jae-Kyoo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1078-1083
    • /
    • 2002
  • Ceramics are significantly used in many industrial applications due to their excellent mechanical and thermal properties such as high temperature strength, low density, high hardness, low thermal expansion, and good corrosion resistive properties, while their disadvantages are brittleness, poor formability and high manufacturing cost. To combine advantages of ceramics with those of metals, they are often used together as one composite component, which necessiates reliable joining methods between metal and ceramic. Direct brazing using an active filler metal has been found to be a reliable and simple technique, producing strong and reliable joints. In this study, the fracture characteristics of Si$_3$N$_4$ ceramic joined to ANSI 304L stainless steel with a Ti-Ag-Cu filler and a Cu (0.25-0.3 mm) interlayer are investigated as a function of strain rate and temperature. In order to evaluate a local strain a couple of strain gages are pasted at the ceramic and metal sides near joint interface. As a result the 4-point bending strength and the deflection of interlayer increased at room temperature with increasing strain rate. However bending strength decreased with temperature while deflection of interlayer was almost same. The fracture shapes were classified into three groups ; cracks grow into the metal-brazing filler line, the ceramic-brazing filler line or the ceramic inside.

Improvement in Long-term Stability of Pd Alloy Hydrogen Separation Membranes (팔라듐 합금 수소분리막의 내구성 향상)

  • Kim, Chang-Hyun;Lee, Jun-Hyung;Jo, Sung-Tae;Kim, Dong-Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.1
    • /
    • pp.11-22
    • /
    • 2015
  • Pd alloy hydrogen membranes for hydrogen purification and separation need thermal stability at high temperature for commercial applications. Intermetallic diffusion between the Pd alloy film and the porous metal support gives rise to serious problems in long-term stability of Pd alloy membranes. Ceramic barriers are widely used to prevent the intermetallic diffusion from the porous metal support. However, these layers result in poor adhesion at the interface between film and barrier because of the fundamentally poor chemical affinity and a large thermal stress. In this study, we developed Pd alloy membranes having a dense microstructure and saturated composition on modified metal supports by advanced DC magnetron sputtering and heat treatment for enhanced thermal stability. Experimental results showed that Pd-Cu and Pd-Ag alloy membranes had considerably enhanced long-term stability owing to stable, dense alloy film microstructure and saturated composition, effective diffusion barrier, and good adhesive interface layer.

A Study on the Solderability of In and Bi Contained Sn-Ag Alloy (In, Bi를 함유한 Sn-Ag계 무연솔더의 솔더링성 연구)

  • 김문일;문준권;정재필
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.3
    • /
    • pp.43-47
    • /
    • 2001
  • Sn-3Ag-8Bi-5In was developed for the intermediate melting point solder. Although In-contained solder is expensive, its melting point is lower than these of Sn-Ag-Cu alloys. Sn-3Ag-8Bi-5In solder used for this research has a melting range of 188~$204^{\circ}C$. On this study wetting characteristics of Sn-3Ag-8Bi-5In were evaluated in order to investigate its availability as a Pb-free solder. Wettabilities of Sn-37Pb and Sn-3.5Ag solders were also studied to compare these of the Sn-3Ag-8Bi-5In. Experimental results showed that the zero-cross-time and wetting time at $240^{\circ}C$ for the Sn-3Ag-8Bi-5In were 1.1 and 2.2 second respectively. These values are a little better than these of Sn-37Pb and Sn-3.5Ag solders. The equilibrium wetting farce of the Sn-3Ag-8Bi-5In was 5.8 mN at $240^{\circ}C$, and it was tuned out to be a little higher than that of Sn-3.5Ag and lower than that of Sn-37Pb.

  • PDF

Interfacial Elemental Change When Soldering the Nico-crally and Fe-Cr-Ni Alloy (국소의치금속상과 Fe-Cr계 wire를 soldering 할때 발생한 계면의 성분변화)

  • Cho, Sung-Am;Ko, Hyun-Kwon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.27 no.1
    • /
    • pp.49-54
    • /
    • 1989
  • The purpose of this study was to investigate the interfacial elemental change when solding the Ni-Co-Cr dental removable partial denture alloy and Fe-Cr-Ni wrought wire alloy with Ag-Cu-Zu Silver solder, by EDXA, EPMA, to investigate the appropriateness of clinical usefullness for repair the fractured clasps of removable partial dentive. The result of this study was as follows: 1. The Ni element of major component of Ticonium penetrate into the silver solder 2. The movement Age element of silver solder into Fe-Cr-Ni wire was not significant, by EDXA and EPMA.

  • PDF

Enhancing Die and Wire Bonding Process Reliability: Microstructure Evolution and Shear Strength Analysis of Sn-Sb Backside Metal (다이 및 와이어 본딩 공정을 위한 Sn-Sb Backside Metal의 계면 구조 및 전단 강도 분석)

  • Yeo Jin Choi;Seung Mun Baek;Yu Na Lee;Sung Jin An
    • Korean Journal of Materials Research
    • /
    • v.34 no.3
    • /
    • pp.170-174
    • /
    • 2024
  • In this study, we report the microstructural evolution and shear strength of an Sn-Sb alloy, used for die attach process as a solder layer of backside metal (BSM). The Sb content in the binary system was less than 1 at%. A chip with the Sn-Sb BSM was attached to a Ag plated Cu lead frame. The microstructure evolution was investigated after die bonding at 330 ℃, die bonding and isothermal heat treatment at 330 ℃ for 5 min and wire bonding at 260 ℃, respectively. At the interface between the chip and lead frame, Ni3Sn4 and Ag3Sn intermetallic compounds (IMCs) layers and pure Sn regions were confirmed after die bonding. When the isothermal heat treatment is conducted, pure Sn regions disappear at the interface because the Sn is consumed to form Ni3Sn4 and Ag3Sn IMCs. After the wire bonding process, the interface is composed of Ni3Sn4, Ag3Sn and (Ag,Cu)3Sn IMCs. The Sn-Sb BSM had a high maximum shear strength of 78.2 MPa, which is higher than the required specification of 6.2 MPa. In addition, it showed good wetting flow.

Pyrometallurgy Process for a Low Graded Gold Alloy with PbO and CaO (저품위 금합금의 PbO와 CaO를 이용한 건식 정련 공정)

  • Song, Jeongho;Song, Ohsung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.608-613
    • /
    • 2017
  • We proposed a pyrometallurgical process to achieve gold alloy with an Au content of more than 80wt% from low grade (<35wt%) gold alloys. We performed the heat treatment at a temperature of $1200^{\circ}C$ for 5 hrs using Au35wt%-Ag5wt%-Cu60wt% gold alloys mixed with 1/2 weighed PbO and CaO flux by varying the ratio of PbO/(PbO+CaO) from 0 to 1. We investigated the change in content of the samples with energy dispersive X-ray spectroscopy (EDS) and time of flight secondary ion mass spectrometry (ToF-SIMS). The EDS results showed that the Au content increased from 35.0wt% in the PbO-only sample to 86.7wt% (in the PbO/(PbO+CaO) 1:1 sample), while the other samples achieved more that 84wt%. In addition, the 2/3 flux ratio sample showed the lowest Ag loss into the flux. In the ToF-SIMS results, the PbO only and CaO only fluxes had Au+ peak intensities of 349 and 37, respectively. Although the CaO-only flux might be more favorable considering the loss of Au into the flux, we concluded that the amount of Au lost into the flux could be ignored. Our results imply that that the pyrometallurgical process using a mixed flux is an effective hydrometallurgical process.

Manufacturing of Composite Solders by an In-situ Process (In-situ 공정에 의한 복합솔더 제조)

  • Hwang, Seong-Yong;Lee, Joo-Won;Lee, Zin-Hyoung
    • Journal of Korea Foundry Society
    • /
    • v.22 no.1
    • /
    • pp.35-41
    • /
    • 2002
  • To improve the reliability of solder joints, a composite solder which consists of solder matrix and intermetallic reinforcements was manufactured by a new method. The cast ingot of Sn-6.9Cu-2.9Ag alloy had primary Cu6Sn5 intermetallics in the form of dendrites. After rolling the ingot, the intermetallic dendrites were crushed into fine particles and distributed uniformly throughout the solder matrix. As the rolled strips became thinner, the average size of the crushed particles reached a critical size which did not decrease any more by further rolling. The critical size was nearly the same as the average width of intermetallic dendrite trunk. The crushed intermetallic particles did not melt and remained in solid state during reflow soldering due to their high meltingterm-perature. The coarsening and gravitational segregation of the particles were observed during reflow soldering.

The Influence of Heat Treatment on the Martensitic Transformation Temperature of Shape Memory Alloy (형상기억합금의 열처리가 마르텐사이트 변태 온도에 미치는 영향)

  • Park, Seong-Geun;Yu, Byeong-Gil;Jin, Gwang-Su;Kim, Gi-Wan
    • Korean Journal of Materials Research
    • /
    • v.7 no.7
    • /
    • pp.571-575
    • /
    • 1997
  • 급냉온도에 따른 전기 저항 측정으로 Cu-17, 25Zn-15AI 및 Cu-17.25Zn-15AI-1Ag형상기억합금의 열처리에 의한 마르텐사이트 변태온도의 영향을 연구하였다. DSC 측정으로 고온 모상에서의 상전이 온도롸 종류를 구별하였고 XRD측정으로 구조 변화를 연구하였다. 그리고 열처리에 의한 온도 변화의 원인을 연구하였17.25Zn-15AI 합금에서 고온 모상의 규칙-불규칙 전이온도인 $T_{2}$, $T_{L21}$은 각각 809K와 610K였다. CuZnAI의 경우 $T_{2}$근방에서의 급냉은 마르텐사이트 변태온도를 높이지만 $T_{L21}$ 근방에서의 급냉은 마르텐사이트 변태온도를 낮춘다. 실험결과 열처리에 따른 상전이온도 변화의 원인은 석출물의 형성이라기 보다는 급냉전의 모상의 구조에 가장 큰 영향을 받는다.받는다.

  • PDF

New Generation of Lead Free Solder Spheres 'Landal - Seal'

  • Walter H.;Trodler K. G.
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2004.09a
    • /
    • pp.211-219
    • /
    • 2004
  • A new alloy definition will be presented concerning increasing demands for the board level reliability of miniaturized interconnections. The damage mechanism for LFBGA components on different board finishes is not quite understood. Further demands from mobile phones are the drop test, characterizing interface performance of different package constructions in relation to decreased pad constructions and therefore interfaces. The paper discusses the characterization of interfaces based on SnPb, SnPbXYZ, SnAgCu and SnAgCuInNd ball materials and SnAgCuInNd as solder paste, the stability after accelerated tests and the description of modified interfaces stric시y related to the assembly conditions, dissolution behavior of finishes on board side and the influence of intermetallic formation. The type of intermetallic as well as the quantity of intermetallics are observed, primaliry the hardness, E modules describing the ability of strain/stress compensation. First results of board level reliability are presented after TCT-40/+150. Improvement steps from the ball formulation will be discussed in conjunction to the implementation of lead free materials. In order to optimize ball materials for area array devices accelareted aging conditions like TCTs were used to analyze the board level reliability of different ball materials for BGA, LFBGA, CSP, Flip Chip. The paper outlines lead-free ball analysis in comparison to conventional solder balls for BGA and chip size packages. The important points of interest are the description of processability related to existing ball attach procedures, requirements of interconnection properties and the knowledge gained the board level reliability. Both are the primary acceptance criteria for implementation. Knowledge about melting characteristic, surface tension depend on temperature and organic vehicles, wetting behavior, electrical conductivity, thermal conductivity, specific heat, mechanical strength, creep and relaxation properties, interactions to preferred finishes (minor impurities), intermetallic growth, content of IMC, brittleness depend on solved elements/IMC, fatigue resistance, damage mechanism, affinity against oxygen, reduction potential, decontamination efforts, endo-/exothermic reactions, diffusion properties related to finishes or bare materials, isothermal fatigue, thermo-cyclic fatigue, corrosion properties, lifetime prediction based on board level results, compatibility with rework/repair solders, rework temperatures of modified solders (Impurities, change in the melting point or range), compatibility to components and laminates.

  • PDF

EPD Superconductor Film with Submicron YBCO on Ag Alloy

  • Soh, Dea-Wha;Fan, Zhanguo;Jeon, Yong-Woo
    • Journal of the Speleological Society of Korea
    • /
    • no.76
    • /
    • pp.49-55
    • /
    • 2006
  • The submicron $YBa_2Cu_3O_x$ powder was prepared by the sol-gel method. The particle size is distributed from 0.2 to 1.0 ${\mu}m$, which benefits to eliminate the micro-cracks formed in the $YBa_2Cu_3O_x$ films deposited by electrophoresis. The powder was single phase of $YBa_2Cu_3O_x$ examined by X-ray diffraction. In the sol-gel process the citrate gel was formed from citric acid and nitrate solution of $Y_2O_3$, $Ba(NO_3)_2$ and CuO. When pH values were adjusted to 6.4-6.7, $Ba(NO_3)_2$ could be dissolved in the citrate solution completely. Appropriate evaporative temperature of the sol-gel formation is discussed. Acetone is used as electrophoreticsolution, in which some water and iodine (0.2 g/1) and polyethylene glycol (2 vol. %) are added. The concentrations of $YBa_2Cu_3O_x$ powders is 20g/l. The thickness of deposited film could be more than 50 ${\mu}m$ in 3 minutes of depositing time. The most EPD films could be 90K zero resistance and the Jc values were over 1000A/cm2 (0 H, 77 K).