• Title/Summary/Keyword: Cu-64

Search Result 313, Processing Time 0.037 seconds

Antibody radiolabeling with diagnostic Cu-64 and therapeutic Lu-177 radiometal

  • Abhinav Bhise;Jeongsoo Yoo
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.8 no.1
    • /
    • pp.45-49
    • /
    • 2022
  • With the development of monoclonal antibodies, therapeutic or diagnostic radioisotope has been successfully delivered at tumor sites with high selectivity for antigens. Different approaches have been applied to improve the tumor-to-normal ratio by considering the in vivo stability of radioimmunoconjugates as a prerequisite. Various stable and inert antibody radiolabeling techniques for radioimmunoconjugate preparation have been extensively evaluated to enhance in vivo stability. Antibody radiolabeling techniques should be rapid and easy; they should not disrupt the immunoreactivity and in vivo behavior of antibodies, which are coupled with a bifunctional chelator (BFC) to stably coordinate with a radiometal. For the design of BFCs, radiometal coordination properties must be considered. However, various diagnostic radionuclides, such as 89Zr, 64Cu, 68Ga, 111ln, and 99mTc, or therapeutic radionuclides, such as 177Lu, 67Cu, 90Y, and 225Ac, have been increasingly used for antibody radiolabeling. In addition to useful radionuclides, 64Cu and 177Lu with the most accessible or the highest production rates in many countries should be considered. In this review, we mainly discussed antibody radiolabeling techniques and conditions that involve 64Cu and 177Lu radiometals.

Development of bombesin peptide kit for prostate cancer diagnosis and treatment using 64Cu/177Lu.

  • Kim, Mi Hyun;Kim, Min Hwan;Kim, Kwang Il;Kim, Jung Young;Lee, Tae Sup;Kang, Joo Hyun;Lee, Kyo Chul;Lee, Yong Jin
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.3 no.2
    • /
    • pp.59-64
    • /
    • 2017
  • It has been reported that $^{64}Cu$ was radiolabeled with bombesin (BBN) peptide binding to the gastrin releasing peptide receptor expressed in human prostate cancer cells (PC3), confirming tumor target efficacy in mouse model. In this study, we developed the kit for the diagnosis and treatment of prostate cancer that can be used clinically using bombesin peptide available of $^{64}Cu$ and $^{177}Lu$ radioisotope labeling. The NODAGA-galacto-BBN peptide containing the NODAGA chelator and galactose was dispensed into a sterilized glass vial and lyophilized to prepare a kit. The stability of the kit after long-term storage in the $4^{\circ}C$ cold chamber and the radiolabeling efficiency after $^{64}Cu$ or $^{177}Lu$ labeling were confirmed by thin layer chromatography. When labeling with $^{64}Cu$ at the initial stage of storage, labeling efficiency of NODAGA-galacto-BBN peptide kit was over 96%, labeling efficiency was over 90% when $^{177}Lu$ was labeled. At 11 months after storage, the radiolabeling efficiency of kit against $^{64}Cu$ and $^{177}Lu$ was each over 95% and 90%. The cell viability was significantly reduced in the $^{177}Lu$-NODAGA-galacto-BBN treated group compared with the control and $^{177}Lu$ alone treated group in clonogenic assay. In conclusion, the NODAGA-galacto-BBN kit prepared by the lyophilization showed high stability over time and high yield of radioisotope labeling. Also $^{177}Lu$-NODAGA-galacto-BBN confirmed high cytotoxicity to prostate cancer cells. Therefore, the NODAGA-galacto-bombesin kit is expected to be useful for the diagnosis and treatment of prostate cancer patients.

Preliminary studies for production of 61Cu using natural nickel target with RFT-30 cyclotron

  • Lee, Jun Young;Hur, Min Goo;Yang, Seung Dae;Park, Jeong Hoon
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.5 no.2
    • /
    • pp.79-82
    • /
    • 2019
  • 61Cu is a promising PET radiometal having favorable nuclear decay characteristics with appropriate half-life of 3.3 h. Owing its promising capabilities in radiopharmaceutical chemistry and its chemical similarities with its isotopes 64Cu and 67Cu, in this work we have tried to optimize the production and separation conditions of 61Cu. 61Cu was produced via (p, x) reaction with natural nickel which was electroplated on the high purity silver coated copper backing target holder. The optimization of target electrodeposition, beam energy and current modulation, target dissolution and separation were optimized in this study. Preliminary studies show that 61Cu was successfully produced and separated which can be further extended for the production of 64Cu and 67Cu.

Area Efficient Hardware Design for Performance Improvement of SAO (SAO의 성능개선을 위한 저면적 하드웨어 설계)

  • Choi, Jisoo;Ryoo, Kwangki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.2
    • /
    • pp.391-396
    • /
    • 2013
  • In this paper, for HEVC decoding, an SAO hardware design with less processing time and reduced area is proposed. The proposed SAO hardware architecture introduces the design processing $8{\times}8$ CU to reduce the hardware area and uses internal registers to support $64{\times}64$ CU processing. Instead of previous top-down block partitioning, it uses bottom-up block partitioning to minimize the amount of calculation and processing time. As a result of synthesizing the proposed architecture with TSMC $0.18{\mu}m$ library, the gate area is 30.7k and the maximum frequency is 250MHz. The proposed SAO hardware architecture can process the decode of a macroblock in 64 cycles.

Synthesis of Cubic Cu2O from Organic-Inorganic Hybrid (유기-무기 혼성화합물로 부터 정육면체 Cu2O 합성)

  • Heo, Yeong-Deok;Song, Ha-Cheol;Guk, Won-Geun
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.1
    • /
    • pp.60-64
    • /
    • 2006
  • has been synthesized using the layered organic-inorganic hybrids, Cu2(OH)3(CH3COO)·H2O as a precursor. Cubic Cu2O is synthesized by reducing Cu2(OH)3(CH3COO)·H2O with glucose in water at 75oC. The effects of precursor and glucose are investigated. The structure of Cu2(OH)3(CH3COO)·H2O plays an important role in preparing the uniform size of Cu2O.

Application of extraction chromatographic techniques for separation and purification of emerging radiometals 44/47Sc and 64/67Cu

  • Vyas, Chirag K.;Park, Jeong Hoon;Yang, Seung Dae
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.2 no.2
    • /
    • pp.84-95
    • /
    • 2016
  • Considerably increasing interest in using the theranostic isotopes/ isotope pairs of radiometals like $^{44/47}Sc$ and $^{64/67}Cu$ for diagnosis and/or therapeutic applications in the nuclear medicine procedures necessitates its reliable production and supply. Separation and purification of no-carrier-added (NCA) isotopes from macro quantitates of the irradiated target matrix along with other impurities is a cardinal procedure amongst several other steps involved in its production. Multitudinous methods including but not limited to liquid-liquid (solvent) extraction, extraction chromatography (EXC), ion exchange, electrodeposition and sublimation are routinely applied either solitarily or in combination for the separation and purification of radioisotopes depending on their production routes, radioisotope of interest and impurities involved. However, application of EXC though has shown promises towards the numerous separation techniques have not received much attention as far as its application prospects in the field of nuclear medicine are concerned. Advances in the recent past for application of the EXC resins in separation and purification of the several medically important radioisotopes at ultra-high purity have shown promising behavior with respect to their operation simplicity, acidic and radiolytic stability, separation efficiencies and speedy procedures with the enhanced and excellent extraction abilities. In this mini review we will be talking about the recent developments in the application and the use of EXC techniques for the separation and purification of $^{44/47}Sc$ and $^{64/67}Cu$ for medical applications. Furthermore, we will also discuss the scientific and practical aspects of EXC in the view of separation of the NCA trace amount of radionuclides.

Preparation of Copper Fine Particles from Waste Copper by Chemical Reduction Method (폐동분으로부터 화학환원법에 의한 Cu 미립자 제조)

  • Kim, Yoon-Do;Song, Ki Chang;Song, Jong-Hyeok
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.560-565
    • /
    • 2007
  • Copper fine particles, ranging from $0.11{\mu}m$ to $0.64{\mu}m$ in average size, were prepared by a chemical reduction method using hydrazine ($N_2H_4$) as a reduction agent in waste copper solutions. The effect of the amount of hydrazine addition was investigated on the properties of the obtained powders. Also, the effect of the addition of dispersing agents [Polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP)] during particle synthesis was studied. The powders, obtained from 1 M waste copper solutions, showed the mixtures of Cu and $Cu_2O$ crystals at low hydrazine addition amounts of 0.8 mol and 1.0 mol, while those exhibited pure Cu crystals at adequate hydrazine addition amount of 0.12 mol. The average size of the Cu powders decreased with increasing the concentrations of hydrazine and dispersing agents. The addition of PVA to the solutions as a dispersing agent was more effective than that of PVP in preventing the aggregation of particles.

Kinetic analysis of 64Cu-NODAGA-gluco-E[c(RGDfK)]2 for a tumor angiogenesis PET tracer

  • Choi, Jae Yong;Park, Ji-Ae;Kim, Jung Young;Lee, Ji Woong;Lee, Minkyung;Shin, Un Chol;Kang, Joo Hyun;An, Gwang Il;Lee, Kyo Chul;Ryu, Young Hoon;Kim, Kyeong Min
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.2 no.2
    • /
    • pp.108-112
    • /
    • 2016
  • Molecular imaging with the radiolabeled RGD peptides for ${\alpha}_v{\beta}_3$ integrin has been an increasing interest for tumor diagnosis and the treatment monitoring. Recently, $^{64}Cu$-NODAGA-gluco-E[c(RGDfK)]$_2$ was developed for quantification of ${\alpha}_v{\beta}_3$ integrin and its biological properties was elucidated. To better understand the molecular process in vivo, we performed the kinetic analysis for the $^{64}Cu$-NODAGA-gluco-E[c(RGDfK)]$_2$. After preparation of a radiotracer, dynamic PET images were obtained in the U87MG xenograft mice for 60 min (n = 6). Binding potential values were estimated from the 3-tissue compartment model, reference Logan and simplified reference tissue model. In the early time frame (0-20 min), the liver, kidney, intestine, urinary bladder and tumor were visualized but these uptakes were diminished as time went by. The tumors showed a good contrast at 40 min after administration. $^{64}Cu$-NODAGA-gluco-E[c(RGDfK)]$_2$ showed the 2-fold uptake in the tumor compared with that in the muscle. The parametric maps for binding values also provide the higher tumor-to-background contrast than the static images. A binding value obtained from the 3-tissue compartment model was comparable to other modeling methods. From these results, we conclude that $^{64}Cu$-NODAGA-gluco-E[c(RGDfK)]$_2$ may be a promising PET radiotracer for the evaluation of angiogenesis.

Research status for long term half-life PET radioisotopes in KIRAMS

  • Kim, Jung Young;Park, Hyun;Chun, Kwon Soo;An, Gwang Il
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.1 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • It is essential use of long term half life radioisotopes for positron emission tomography (PET) imaging study of biopharmaceuticals because most of biopharmaceuticals have long biological half-life. Some representative isotopes are $^{124}I$, $^{64}Cu$, $^{89}Zr$ and so on. These PET radioisotopes and their radiopharmaceuticals have recently received growing interest because of long half life and good imaging properties. Furthermore, $^{64}Cu$ and $^{89}Zr$ can be used in a number of radiopharmaceuticals due to its ease of conjugation to peptides and antibodies using the proper chelator. In recent years, since $^{124}I$ was first developed in 2005, we have been studied to develop an efficient method and procedure for producing these radioisotopes, and we have made considerable progress in production of long term half life radioisotopes. This review introduces the general production system, purification procedure, and several advances on targeting method for $^{124}I$ and $^{64}Cu$ in KIRAMS.