DOI QR코드

DOI QR Code

Antibody radiolabeling with diagnostic Cu-64 and therapeutic Lu-177 radiometal

  • Abhinav Bhise (Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University) ;
  • Jeongsoo Yoo (Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University)
  • Received : 2022.06.17
  • Accepted : 2022.06.25
  • Published : 2022.06.30

Abstract

With the development of monoclonal antibodies, therapeutic or diagnostic radioisotope has been successfully delivered at tumor sites with high selectivity for antigens. Different approaches have been applied to improve the tumor-to-normal ratio by considering the in vivo stability of radioimmunoconjugates as a prerequisite. Various stable and inert antibody radiolabeling techniques for radioimmunoconjugate preparation have been extensively evaluated to enhance in vivo stability. Antibody radiolabeling techniques should be rapid and easy; they should not disrupt the immunoreactivity and in vivo behavior of antibodies, which are coupled with a bifunctional chelator (BFC) to stably coordinate with a radiometal. For the design of BFCs, radiometal coordination properties must be considered. However, various diagnostic radionuclides, such as 89Zr, 64Cu, 68Ga, 111ln, and 99mTc, or therapeutic radionuclides, such as 177Lu, 67Cu, 90Y, and 225Ac, have been increasingly used for antibody radiolabeling. In addition to useful radionuclides, 64Cu and 177Lu with the most accessible or the highest production rates in many countries should be considered. In this review, we mainly discussed antibody radiolabeling techniques and conditions that involve 64Cu and 177Lu radiometals.

Keywords

Acknowledgement

This work was supported by the R&D program through the National Research Foundation of Korea funded by the Ministry of Science, ICT & future Planning (No. 2020M2D8A3094031, 2019R1A2C2084313, and 2022M2E7A2019023).

References

  1. Vugts DJ, van Dongen GAMS. Immunoglobulins as Radiopharmaceutical Vectors. In: Lewis JS, Windhorst AD, Zeglis BM, editors. Radiopharmaceutical Chemistry Cham : Springer International Publishing; 2019. p. 163-9.
  2. Dean AQ, Luo S, Twomey JD, Zhang B. Targeting cancer with antibody-drug conjugates: Promises and challenges. MAbs 2021;13:1951427.
  3. Warram JM, de Boer E, Sorace AG, Chung TK, Kim H, Pleijhuis RG, van Dam GM, Rosenthal EL. Antibody-based imaging strategies for cancer. Cancer Metastasis Rev 2014;33:809-2.
  4. Barbet J, Hardies M, Bourgeois M, Chatal JF, Cherel M, Davodeau F, Faivre-Chauvet A, Gestin JF, Kraeber-Bodere F. Radiolabeled antibodies for cancer imaging and therapy. Methods Mol Biol 2012;907:681-7. https://doi.org/10.1007/978-1-61779-974-7_38
  5. Conti M, Eriksson L. Physics of pure and non-pure positron emitters for PET: a review and a discussion. EJNMMI Phys 2016;3:8.
  6. Gudkov SV, Shilyagina NY, Vodeneev VA, Zvyagin AV. Targeted Radionuclide Therapy of Human Tumors. Int J Mol Sci 2016;17:33.
  7. Brechbiel MW. Bifunctional chelates for metal nuclides. Q J Nucl Med Mol lmaging 2008;52:166-3.
  8. Kang MS, Kong TWS, Khoo JYX, Loh TP. Recent developments in chemical conjugation strategies targeting native amino acids in proteins and their applications in antibody-drug conjugates. Chem Sci 2021;12:13613-7. https://doi.org/10.1039/D1SC02973H
  9. Boulet-Audet M, Byrne B, Kazarian SG. High-throughput thermal stability analysis of a monoclonal antibody by attenuated total reflection FT-IR spectroscopic imaging. Anal Chem 2014;86:9786-3.
  10. Krecisz P, Czamecka K, Krolicki L, Mikiciuk-loasik E, Szymanski P. Radiolabeled peptides and antibodies in medicine. Bioconjugate Chem 2021;32:25-2.
  11. Xu X, Liu T, Liu F, Guo X, Xia L, Xie Q, Li N, Huang H, Yang Xianteng, Xin Y, Zhu H, Yang Z. Synthesis and evaluation of 맛-radiolabeled NOTA-cetuximab (64Cu-NOTA-C225) for immuno-PET imaging of EGFR expression. Chin J Cancer Res 2019;31:400-9. https://doi.org/10.21147/j.issn.1000-9604.2019.02.14
  12. Lee W, Bobba KN, Kim JY, Park H, Bhise A, Kim W, Lee K, Rajkumar S, Nam B, Lee KC, Lee SH, Ko S, Lee HJ, Jung ST, Yoo J. A short PEG linker alters the in vivo pharmacokinetics of trastuzumab to yield high-contrast immuno-PET images. J Mater Chem B 2021;9:2993-7. https://doi.org/10.1039/D0TB02911D
  13. Natarajan A, Gowrishankar G, Nielsen CH, Wang S, Iagaru A, Goris ML, Gambhir SS. Positron emission tomography of 64Cu-OOTA-Rituximab in a transgenic mouse model expressing human CD20 for clinical translation to image NHL. Mol Imaging Biol 2012;14:608-6.
  14. Voss SD, Smith SV, DiBartolo N, McIntosh LT, Cyr EM, Bonab AA, Dearling JLJ, Carter EA, Fischman AJ, Treves ST, Gillies SD, Sargeson AM, Huston JS, Packard AB. Positron emission tomography (PET) imaging of neuroblastoma and melanoma with 64Cu-SarAr immunoconjugates. Proc Natl Acad Sci U S A 2007;104:17489-3.
  15. Di Bartolo N, Sargeson AM, Smith SV. New 64Cu PET imaging agents for personalised medicine and drug development using the hexa-aza cage, SarAr. Org Biomol Chem 2006;4:3350-7. https://doi.org/10.1039/b605615f
  16. Cooper MS, Ma MT, Sunassee K, Shaw KP, Williams JD, Paul RL, Donnelly PS. Comparison of 64Cu-complexing bifunctional chelators for radioimmunoconjugation: labeling efficiency, specific activity, and stability. Bioconjug Chem 2012;23:1029-9. https://doi.org/10.1021/bc300037w
  17. Liu Z, Ma T, Liu H, Jin Z, Sun X, Zhao H, Shi J, Jia B, Li F, Wang F. 177Lu-labeled antibodies for EGFR-targeted SPECT/CT imaging and radioirnmunotherapy in a preclinical head and neck carcinoma model. Mol Pharm 2014;11:800-7. https://doi.org/10.1021/mp4005047
  18. Rasaneh S, Rajabi H, Babaei MH, Daha FJ. 177Lu labeling of Herceptin and preclinical validation as a new radiopharmaceutical for radioimrmmotherapy of breast cancer. Nucl Med Biol 2010;37:949-5.
  19. Vera DR, Eigner S, Henke KE, Lebeda O, Melichar F, Beran M. Preparation and preclinical evaluation of 177Lu-nimoruzumab targeting epidermal growth factor receptor overexpressing tumors. Nucl Med Biol 2012;39:3-13. https://doi.org/10.1016/j.nucmedbio.2011.07.001
  20. D'Huyvetter M, Vincke C, Xavier C, Aerts A, Impens N, Baatout S, Raeve HD, Muyldermans S, Caveliers V, Devoogdt, Lahoutte. Targeted radionuclide therapy with A 177Lu-labeled anti-HER2 nanobody. Theranosties 2014;4:708-20. https://doi.org/10.7150/thno.8156
  21. Kang L, Li C, Rosenkrans ZT, Huo N, Chen Z, Ehlerding EB, Huo Y, Ferreira CA, Barnhart TE, Engle JW, Wang R, Jiang D, Xu X, Cai W. CD38-Targeted Theranostics of Lymphoma with 89Zr/177Lu-La-beled Daratumumab. Adv Sci(Weinh) 2021;8:2001879.