• Title/Summary/Keyword: Cu-페라이트

Search Result 79, Processing Time 0.019 seconds

Preparation and Characterization of Nanocrystalline Spinel Ferrites by Chemical Co-precipitation (화학적 공침법을 이용한 침상형 페라이트 합성)

  • Shen, Jiao-Wen;Lim, Yun-Hui;Jo, Young-Min
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.185-189
    • /
    • 2011
  • In this work, nano-sized M-ferrites (M=Co, Ni, Cu, Zn) for the decomposition of carbon dioxide were synthesized by the chemical co-precipitation. From the thermogravimetric analysis, it was clear that the maximum weight loss of each sample took place below $350^{\circ}C$. High temperature calcination resulted in more systematic crystallines, smaller specific surface area and larger particle size. An analysis by FTIR in the range of $375{\sim}406cm^{-1}$ revealed the presence of chelates at the octahedral site, which implies the formation of spinel structure in the ferrites. The current work showed that a $500^{\circ}C$ is the optimum heat treatment temperature of metal ferrites for $CO_2$ decomposition reaction.

Sintering of Ni-Zn Ferrites by Microwave Hybrid Heating (마이크로파 가열을 이용한 Ni-Zn 페라이트의 소결)

  • 김진웅;최승철;이재춘;오재희
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.7
    • /
    • pp.669-674
    • /
    • 2002
  • Ni-Zn ferrite was sintered by microwave hybrid sintering method using microwave energy of 2.45 GHz, 700 W in the temperature range of 900$^{\circ}C$ ∼ 1070$^{\circ}C$. A high density (98%TD) Ni-Zn ferrite, added Bi$_2$O$_3$ and CuO, with a single phase was obtained by microwave sintering at 970$^{\circ}C$ for 15 min. All the sintered samples showed sintered density over 90% of TD. These results indicate that the processing time and energy consumption can be reduced significantly by microwave hybrid sintering method.

Complex Permeability Analysis of NiCuZn Ferrites (NiCuZn 계 페라이트의 조성에 따른 복소투자율 변화 해석)

  • 남중희;오재희
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.6
    • /
    • pp.382-387
    • /
    • 1996
  • The characteristics of the complex permeability of ${(Ni_{x}Cu_{0.2}Zn_{0.8-x}O)}_{1-w}{(Fe_{2}O_{3})}_{1+w}$ with various Ni and $Co_{3}O_{4}$ contents were investigated in this work. It is found that the NiCuZn ferrites with $x{\geq}0.6$ have a relatively small peak width of the imaginary part of permeability $\mu$". The resonance frequency is increased as Ni content becomes higher, where the loss is low. The $\mu$" value decreases with increasing FezO, deficiency, but the resonance frequency($f_{\mu"max}$) is only slightly affected by $Fe_{2}O_{3}$ deficiency. In case of $Co_{3}O_{4}$ addition to the NiCuZn ferrites, the $f_{\mu"max}$ increases since the initial permeability decreases with the amount of $Co_{3}O_{4}$. It is concluded that the Ni content in the NiCuZn ferrite is a dominant factor for the total loss of these spinel ferrites.

  • PDF

A Study on the Microwave Absorber Properties of Ni-Cu-Zn Ferrites Composite (Ni-Cu-Zn Ferrite의 복합형 전파흡수체 특성 연구)

  • Min, Eui-Hong;Kim, Moon-Suk;Koh, Jae-Gui
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.6
    • /
    • pp.238-241
    • /
    • 2007
  • Ni-Cu-Zn ferrites were prepared by the co-precipitation. Physical properties and Microwave absorbing properties were investigated in Ni-Cu-Zn ferrite for the aim of microwave absorbers. From the analysis of X-ray diffraction patterns, we can see that all the particles have only a single phase spinel structure. The loss factor was maximum at sintering temperature $1100^{\circ}C$. The initial permeability of sintered ferrite obtained was an average of 50. We found that the $(Ni_{0.7}Cu_{0.2}Zn_{0.1}O)_{1.02}(Fe_2O_3)_{0.98}$ can be used in ferrite rubber composite microwave absorber when sintering temperature at $1100^{\circ}C$.

Study on Grinding Force and Ground Surface of Ferrite (페라이트의 연삭저항 및 연삭면 특성)

  • 김성청
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.3
    • /
    • pp.17-25
    • /
    • 1997
  • This paper aims to clarify the effects of grinding conditions on the grinding force, ground surface and chipping size of workpiece in surface grinding of various ferrites with the resin bond diamond wheel. The main conclusions obtained were as follows: In a constant peripheral wheel speed, the specific grinding energy is fitted by straight lines with grinding depth coefficient($\delta$) in a logarithmic graph. The effect of both depth of cut and workpiece speed on grinding energy becomes larger in the order of Mn-Zn, Cu-Ni-Zn and Sr. When using the diamond grain of the lower toughness, the roughness of the ground surface becomes lower. The ground surfaces show that the fracture process during grinding becomes more brittle in the order of Sr, Mn-Zn and Cu-Ni-Zn. The chipping size at the corner of workpiece in grinding increases with the the increases of the depth of cut and workpiece speed, and the decrease of peripheral wheel speed. The effect of both depth of cut and workpiece speed on chipping size becomes more larger in the order of Sr, Mn-Zn and Cu-Ni-Zn.

  • PDF

Properties of Thick Films Prepared with $V_2O_5$-doped Ferrite Pastes ($V_2O_5$ 도핑한 페라이트 페이스트 후막 특성)

  • 제해준;김병국;박재환;박재관
    • Korean Journal of Crystallography
    • /
    • v.12 no.2
    • /
    • pp.70-75
    • /
    • 2001
  • The purpose of this study is to investigate the effect of V₂O/sub 5/ addition on physical and magnetic properties of NiCuZn ferrite for multi-layer chip inductors. NiCuZn ferrite pastes doped with 0, 0.1, 0.3 and 0.5 wt% V₂O/sub 5/ were prepared and samples of ferrite sheets were prepared by the screen printing method. They were sintered at 870, 880, 890 and 900℃, and then their physical and magnetic properties were analyzed. After sintering at 870℃, the sintered density of the ferrite sheet doped with 0.5wt% V₂O/sub 5/ showed the highest value to 5.08g/cm³due to the best densification by the liquid phase sintering, while the microstructures of ferrite sheets doped with 0.1 and 0.3 wt% V₂O/sub 5/ showed and inhibited grain growth. Irrespective of the sintering temperature, the initial permeability of ferrite sheet doped with 0.5 wt% V₂O/sub 5/ was highest and after sintering beyond 880℃, the quality factor of 0.3 wt% V₂O/sub 5/-doped sample appeared to be highest.

  • PDF

Properties of Cu-Contained Spinel Ferrites with Various Cu Contents (Cu계 스피넬 페라이트의 Cu 함량에 따른 특성 변화)

  • 남중희;오재희
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.11
    • /
    • pp.1245-1252
    • /
    • 1996
  • The charcteristics for the copper-contained spinel ferrites such as NiCu-and ZnCu ferrites with various copper content are investigated in this study which can provide a explanation for the behavior of copper in sintering at a low temperatuer. The bulk density and the grain size for these sintered ferrites were increased with the larger amount of copper in compositions. In microstructure of copper-contained spinel ferrites copper exists in the grain boundary which is sintering process. Electrical resistivity and frequency range with maximum Q-facor of NiCu-or ZnCu ferrites were decreased as increasing of copper content in ferrite composition.

  • PDF

DC Bias Current Influence to the Sensitivity of Orthogonal Fluxgate Sensor Fabricated with NiZn Ferrite Core (NiZn 페라이트코어를 이용하여 제작한 직교형 플럭스게이트 센서의 출력에 미치는 바이어스전류의 영향)

  • Shin, Kwang-Ho
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.3
    • /
    • pp.94-97
    • /
    • 2013
  • Orthogonal fluxgate sensor was fabricated with cylinder-shaped NiZn ferrite core, Cu wire through the core and pickup coil wound on the core, and the bias current effect on the output sensitivity of it was investigated. The output ($$\sim_\sim$$ sensitivity) of the sensor was largely dependent on the operation frequency, and the tendency of sensor output was similar to that of the impedance of pickup coil. The maximum output was obtained by adding the DC bias current of which value was over 50% of the excitation current. The output was saturated when the DC bias current was larger than 50% of the excitation current.