• 제목/요약/키워드: Cu nano powder

검색결과 118건 처리시간 0.021초

Nanodispersion-Strengthened Metallic Materials

  • Weissgaerber, Thomas;Sauer, Christa;Kieback, Bernd
    • 한국분말재료학회지
    • /
    • 제9권6호
    • /
    • pp.441-448
    • /
    • 2002
  • Dispersions of non-soluble ceramic particles in a metallic matrix can enhance the strength and heat resistance of materials. With the advent of mechanical alloying it became possible to put the theoretical concept into practice by incorporating very fine particles in a flirty uniform distribution into often oxidation- and corrosion- resistant metal matrices. e.g. superalloys. The present paper will give an overview about the mechanical alloying technique as a dry, high energy ball milling process for producing composite metal powders with a fine controlled microstructure. The common way is milling of a mixture of metallic and nonmetallic powders (e.g. oxides. carbides, nitrides, borides) in a high energy ball mill. The heavy mechanical deformation during milling causes also fracture of the ceramic particles to be distributed homogeneously by further milling. The mechanisms of the process are described. To obtain a homogeneous distribution of nano-sized dispersoids in a more ductile matrix (e.g. aluminium-or copper based alloys) a reaction milling is suitable. Dispersoid can be formed in a solid state reaction by introducing materials that react with the matrix either during milling or during a subsequent heat treatment. The pre-conditions for obtaining high quality materials, which require a homogeneous distribution of small dis-persoids, are: milling behaviour of the ductile phase (Al, Cu) will be improved by the additives (e.g. graphite), homogeneous introduction of the additives into the granules is possible and the additive reacts with the matrix or an alloying element to form hard particles that are inert with respect to the matrix also at elevated temperatures. The mechanism of the in-situ formation of dispersoids is described using copper-based alloys as an example. A comparison between the in-situ formation of dispersoids (TiC) in the copper matrix and the milling of Cu-TiC mixtures is given with respect to the microstructure and properties, obtained.

고밀도화 공정에 의한 Fe-Co 계 밸브시트 합금의 조직변화와 열적 특성 (Thermal Properties and Microstructural Changes of Fe-Co System Valve Seat Alloy by High Densification Process)

  • 안인섭;박동규;안광복;신승목
    • 한국분말재료학회지
    • /
    • 제26권2호
    • /
    • pp.112-118
    • /
    • 2019
  • Infiltration is a popular technique used to produce valve seat rings and guides to create dense parts. In order to develop valve seat material with a good thermal conductivity and thermal expansion coefficient, Cu-infiltrated properties of sintered Fe-Co-M(M=Mo,Cr) alloy systems are studied. It is shown that the copper network that forms inside the steel alloy skeleton during infiltration enhances the thermal conductivity and thermal expansion coefficient of the steel alloy composite. The hard phase of the CoMoCr and the network precipitated FeCrC phase are distributed homogeneously as the infiltrated Cu phase increases. The increase in hardness of the alloy composite due to the increase of the Co, Ni, Cr, and Cu contents in Fe matrix by the infiltrated Cu amount increases. Using infiltration, the thermal conductivity and thermal expansion coefficient were increased to 29.5 W/mK and $15.9um/m^{\circ}C$, respectively, for tempered alloy composite.

Ultrasonic Spray Pyrolysis 법에 의한 Bi2Sr2Ca2Cu3Ox 분말합성 및 특성평가 (Synthesis and Characterization of Bi2Sr2Ca2Cu3Ox Powders by Ultrasonic Spray Pyrolysis Method)

  • 배병수;정상진;이봉;문창권;최희락
    • 한국해양공학회지
    • /
    • 제24권6호
    • /
    • pp.86-91
    • /
    • 2010
  • Superconductor material $Bi_2Sr_2Ca_2Cu_3O_x$(Bi-2223) powders were synthesized by ultrasonic spray pyrolysis method. It is clear that Bi-2223 phase more than Bi-2212 phase was acquired at sufficient synthesized time. Best condition for Bi-2223 phase was synthesizing temperature at $860^{\circ}C$. We also investigated the effects for concentrations and viscosities of starting liquid precursor as well as temperature distribution of reacting furnace. The size of synthesized powder was decreased by decreasing the concentration of starting liquid precursor. Modified reacting furnace with four different temperature heating zones gave us successful results for desirable nano-powder including $Bi_2Sr_2Ca_2Cu_3O_x$ phase. Citric acid addition to starting liquid precursor showed increasing of the size for synthesized powder. Bi-2223 single phase was acquired from Bi2223 and Bi-2212 mixed phases through heat treatment in box furnace at 24 hours.

저온 분사 코팅법으로 제조된 Cu/CNT 복합 코팅층의 미세조직 및 물성 연구 (A Study on the Microstructure and Physical Properties of Cold Sprayed Cu/CNT Composite Coating)

  • 권성희;박동용;이대열;어광준;이기안
    • 대한금속재료학회지
    • /
    • 제46권3호
    • /
    • pp.182-188
    • /
    • 2008
  • Carbon nanotubes(CNTs) have outstanding mechanical, thermal, and electrical properties. Thus, by placing nanotubes into appropriate matrix, it is postulated that the resulting composites will have enhanced properties. Cold spray can produce thick metal-based composite coatings with very high density, low oxygen content, and phase purity, which leads to excellent physical properties. In this study, we applied cold spray coating process for the consolidation of Cu/CNT composite powder. The precursor powder mixture, in which CNTs were filled into copper particles, was prepared to improve the distribution of the CNT in copper matrix. Pure copper coating was also conducted by cold spraying as a reference. Annealing heat treatment was applied to the coating to examine its effect on the properties of the composite coating. The hardness of Cu/CNT composite coating represented similar value to that of pure copper coating. It was importantly found that the electrical conductivity of the Cu/CNT composite coating significantly increased from 53% for the standard condition to almost 55% in the optimized condition, taking annealed ($500^{\circ}C/1hr$.) copper coating as a reference (100%). The thermal conductivity of Cu/CNT composite coating layer was higher than that of pure Cu coating. It was also found that the electrical and thermal conductivities of Cu/CNT composite could be improved through annealing heat treatment. The microstructural evolution of Cu/CNT coating was also investigated and related to the macroscopic properties.

나노유체의 열전도율 실험과 열전달 메커니즘의 제시 (Heat Conductivity Test and Conduction Mechanism of Nanofluid)

  • 박권하;이진아;김혜민
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권6호
    • /
    • pp.862-868
    • /
    • 2008
  • Many studies have been conducted to increase heat transfer in fluid. One of the various heat transfer enhancement techniques is suspending fine metallic or nonmetallic solid powder in traditional fluid. Nanofluid is defined as a new kind of heat transfer fluid containing a very small quantity of nanometer particles that are uniformly and stably suspended in a liquid. This study investigates the effect of nanofluid containing diamond, CuNi and CuAg nanometer particles, and proposes the heat transport mechanism of nanofluid. The test result shows that the thermal conductivity of nanofluid is much higher than that of traditional fluid, and the increasing rate of the conductivity is dependent on the conductivity of the solid metal.

가스분사 분말로부터 고온 압출된 Al-Ni-Mm-(Cu, Fe)합금들의 미세구조 및 기계적 성질 (Microstructure and Mechanical Properties of Al-Ni-Mm-(Cu, Fe) Alloys Hot-Extruded from Gas-Atomized Powders)

  • 김혜성
    • 한국재료학회지
    • /
    • 제16권2호
    • /
    • pp.137-143
    • /
    • 2006
  • The effects of Cu and Fe additions on the thermal stability, microstructure and mechanical properties of $Al_{85}-Ni_{8.5}-Mm_{6.5},\;Al_{84}-Ni_{8.5}-Mm_{6.5}Cu_1,\;Al_{84}-Ni_{8.5}-M_{m6.5}Fe_1$ alloys, manufactured by gas atomization, degassing and hot-extrusion were investigated. Gas atomization, with a wide super-cooled liquid region, allowed the alloy powders to exhibit varying microstructure depending primarily on the powder size and composition. Al hotextruded alloys consisted of homogeneously-distributed fine-grained fcc-Al matrix and intermetallic compounds. A substitution of 1 at.% Al by Cu increased the thermal stability of the amorphous phase and produced alloy microstructure with smaller fcc-Al grains. On the other hand, the same substitution of 1 at.% Al by Fe decreased the stability of the amorphous phase and produced larger fcc-Al grains. The formation of intermetallic compounds such as $Al_3Ni,\;Al_{11}Ce_3\;and\;Al_{11}La_3$ was suppressed by the addition of Cu or Fe. Among the three alloys examined, the highest Vickers hardness and compressive strength were obtained for $Al_{84}-Ni_{8.5}-M_{m6.5}Cu_1$ alloy, and related to the finest fcc-Al grain size attained from increased thermal stability with Cu addition.

Fabrication and Photocatalytic Properties of Visible Light Responsive Cuprous Oxide Cubes

  • Lin, Jiudong;Tao, Feifei;Sheng, Congcong;Li, Jianwei;Yu, Xiaoding
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권4호
    • /
    • pp.1110-1116
    • /
    • 2014
  • The cuprous oxide cubes with the special porous surface constructed by nano-prisms have been successfully fabricated by a solvothermal method. The template-free method is simple and facile without any surfactant. The X-ray powder diffraction (XRD) pattern suggests that the as-prepared product is the pure primitive cubic $Cu_2O$. The effects of the experimental parameters, such as the reaction temperature, reaction time and the concentration of sodium acetate anhydrous, on the morphologies of the products were investigated in detail by the scanning electron microscopy (SEM). Based on the time-dependent experiments, the possible formation mechanism was proposed. Using photocatalytic degrading reactive dyes as the model reaction and xenon lamp to simulate sunlight, the $Cu_2O$ cubes with the porous surface might possess higher photocatalytic activity than those of the commercial $Cu_2O$ powder in the visible-light region, indicating the excellent photocatalytic performance.

TFA-MOD공정에서 $BaCeO_3$ 첨가에 의한 $YBa_2Cu_3O_{7-\delta}$ 박막의 임계전류밀도 증가 (Enhancement of critical current density in $BaCeO_3$ doped $YBa_2Cu_3O_{7-\delta}$ thin Films deposited by TFA-MOD process)

  • 이종범;김병주;이희균;홍계원
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제10권1호
    • /
    • pp.1-5
    • /
    • 2008
  • The effect of $BaCeO_3$ doping on the critical current density of YBCO film by TFA-MOD method was studied. $BaCeO_3$ doping was made by two method; one is direct addition of $BaCeO_3$ nano-sized powder prepared by citrate process followed by grinding with planetary ball mill for 10 hours. Another is addition of Ba-Ce precursor solution prepared with Ba-acetate and Ce acetate dissolved in TFA to the YBCO-TFA precursor solution. The film was made by standard dip coating and heat treatment process with conversion temperature of $790^{\circ}C$ in 1000 ppm oxygen containing moisturized Ar gas atmosphere. The direct addition of $BaCeO_3$ powder resulted in YBCO film with good epitaxial growth and no evidence of second phase formation. The addition through precursor solution resulted in the increase of critical current density upto 30 at% doping and uniform dispersion of $BaCeO_3$ fine inclusion was confirmed by SEM-EDX.

Photo Catalytic Ability of Acicular Shaped TiO$_{2}$ Rutile Powder in Aqueous Metal-EDTA Solutions

  • Kim, Sun-Jae;chang-Joo choi;Park, Soon-Dong;Hwang, Jong-Sun;Han, Byung-Sung
    • Transactions on Electrical and Electronic Materials
    • /
    • 제2권2호
    • /
    • pp.37-41
    • /
    • 2001
  • Photo catalytic characteristics of nano-sized TiO$_2$ powder with rutile phase produced using homogeneous precipitation process at low temperatures (HPPLT) were compared with those of commercial P-25 powder by Degussa Co. The TiO$_2$ powder by HPPLT showed very higher photoactivity in the removal rate, showing lower pH values in the solution, than the P-25 powder when eliminating metal ions such as Pb and Cu from aqueous metal-EDTA solutions. This can be inferred the more rapid photo-oxidation or -reduction of metal ions from the aqueous solution, together with relatively higher efficiencies in the use of electron-hole pair formed on the surface of TiO$_2$ particle, under UV light irradiation. Also, in the view of the TiO$_2$ particle morphology, compared to the well-dispersed spherical P-25 particle, the agglomerated TiO$_2$ particle by HPPL T consists of acicular typed primary particle with the thickness ranged of 3∼7 nm, which would be more effective to the photocatalytic reactions without electron-hole recombination on the surface of the TiO$_2$ particle under the UV light irradiation. It is, therefore, thought that the higher photo activity of the rutile TiO$_2$ powder by HPPLT in the aqueous solutions resulted from having its higher specific surface area as well as acicular shape primary particle with very thin thickness.

  • PDF

철기(Fe Based) 나노결정질 합금 분말코어의 코팅제 및 입도가 연자기적 특성에 미치는 영향 (Influence of Coating Agent and Particle Size on the Soft Magnetic Properties of Fe Based Nano Crystalline Alloy Powder Core)

  • 장세종;최영진;김상욱;전병서;이태행;송창빈;남궁정
    • 한국자기학회지
    • /
    • 제25권3호
    • /
    • pp.67-73
    • /
    • 2015
  • 본 연구는 철기(Fe based) $Fe_{73.5}Si_{13.5}B_9Nb_3Cu_1$ 나노결정 합금의 분말코어(powder core)의 연자기적 특성 향상을 위한 기초연구로서, 절연 코팅제의 첨가량 및 분말입도에 따른 투자율, 코어손실 및 DC 바이어스 특성을 주로 조사하였다. 우선 합금조성을 PFC 장치를 이용하여 비정질 합금리본을 제조한 후, 열처리, 미분쇄 및 분급하여 얻어진 합금분말에 절연 코팅제(PEI)의 첨가량을 0.5, 1.0, 2.0, 2.5 wt%로 변화시켜 $16ton/cm^2$으로 압축성형 및 결정화 열처리하여 제조한 토로이달 나노결정 분말코어($OD12.7mm{\times}ID7.62mm{\times}H4.75mm$)는 절연 코팅제 함량이 증가할수록 투자율은 감소하였지만, 코어손실 및 DC 바이어스 특성은 향상됨을 확인하였다. 이러한 이유는 합금분말 절연 코팅제 첨가량이 증가할수록 비정질 합금분말 입자가 적어져 분말코어의 성형밀도가 낮아지기 때문으로 추정되었으며, 절연 코팅제의 함량은 1 wt%가 가장 적합한 것으로 판단되었다. 또한 절연 코팅제 함량을 1 wt%로 고정하고, 합금분말의 입도에 따라 제조한 분말코어의 경우, 실효투자율 및 코어손실은 입도가 클수록 우수하였지만, DC 바이어스 특성은 인가자장이 증가함에 따라 더욱 나빠짐을 확인하였다. 그 이유는 합금분말 표면의 코팅층 두께 차이에 의한 절연효과, 잔류기공 혹은 분말코어의 성형밀도 차이 등에 기인하는 것으로 추정되었다.